Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, X, and LinkedIn. 

     

Chrysler part of Jeep new Wrangler models recalled


Recommended Posts

Chrysler (China) Automobile Sales Co., Ltd. filed a recall plan with the State Administration of Market Supervision and Administration in accordance with the requirements of the Regulations on the Management of Defective Automobile Product Recall and the Implementation Measures of the Regulations on the Management of Defective Automobile Product Recall. It decided to recall some Jeep New Herdsman models from November 20, 2018, totaling 35. The car.

During the period from May 7, 2018 to May 10, 2018, a total of 35 new Jeep models were produced.

Some of the front suspension thrust rod brackets within the scope of this recall may not be welded properly, resulting in the separation of the thrust rod bracket from the frame, resulting in the reduction of vehicle steering capacity, increasing the risk of collision, and there are potential safety hazards.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

  • Similar Topics

    • By Counterman
      link hidden, please login to view announced 10 new part numbers that cover over 3,145,000 applications and model years 2014-2024. Anchor said the below part numbers, which are in stock and available for immediate delivery, “represent excellent sales opportunities.” For more details on Anchor’s complete program availability, contact your local sales representative or call Anchor’s customer service department direct at 1-888-444-4616.
      Anchor Industries will be exhibiting at AAPEX 2024, at booth A4434.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      link hidden, please login to view announced the launch of 22 new products in North America. The new part numbers include complete strut assemblies and shock absorbers, representing over 5 million vehicles in new coverage. The launches include coverage for important models in the national vehicle car parc, such as Jeep Compass, Toyota Highlander and BMW X-3, in addition to brand new applications including the Chrysler Pacifica 2023, and the Kia Forte GT 2023, among others,
      link hidden, please login to view said. “By prioritizing innovation and cutting-edge solutions at our factories, we consistently develop new products for the aftermarket, utilizing the same quality components as we provide to the OE market. These recent additions not only expand our product range but also reinforce our presence in North America. The new items are in stock and ready to ship!” said Bruno Bello, director of global marketing at PRT.
      For more information, call 1-770-238-1611 or visit www.prtautoparts.com, or follow @prtautoparts.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      New research by the Specialty Equipment Market Association (SEMA) is shedding light on the latest trends and developments in vehicle lifecycles and providing new insights for those who provide parts for accessorizing and modifying the more than 289 million vehicles in the US. 
      Findings in the new
      link hidden, please login to view include: Vehicles are staying on the road longer, a continuing trend. The average U.S. vehicle age is now at 12.6 years, its highest number in over a decade. Passenger cars are now an average of 14 years old (up from 13.6), while light trucks rose slightly to 11.9, from 11.8. Used-car market ticks downward but remains historically high. The average listing price of a used vehicle in the U.S. is $25,251, as of July 2024. Car values have fallen faster than that of light trucks, with the sharpest decrease in overall vehicle value found in EVs (-11%).  Stabilization of new vehicle prices offset by continued climb of interest rates. The average new vehicle price sits at $48,644, down slightly from the year prior, and halting a dramatic climb that began in the beginning of 2021. However, interest rates for new and used vehicles continue to hound buyers, remaining significantly higher than those offered in 2021-2022, regardless of loan-term length.  Automakers are producing fewer entry-level vehicles. While new vehicle inventory in 2024 has reached a three-and-a-half-year high, small cars and other entry-level vehicles (those priced below $20,000) make up just 0.7% of the market, compared with 7% five years ago. This lack of affordability has a profound impact on younger people, who are historically more price-sensitive than older drivers. Two decades of increasingly dependable vehicles. Since 2003, vehicles have exhibited fewer problems, highlighting a growing reliability that is a boon to consumers. However, recent years have yielded an increase in vehicle issues tied to new technology-based automotive features, including driving assistance and infotainment systems — a trend that could impact future dependability.  The nation’s fleet of vehicles is growing. The past year saw the net addition of 3 million more vehicles to the roads, with crossovers (72.7 million) closing the gap with passenger cars (89.2 million) as the dominant segment of the entire fleet. However, compared to 10 years ago, vehicle registrations skew more heavily toward light trucks than cars. The specialty-equipment aftermarket continues to grow — and is expected to keep growing. Specialty equipment retail sales in 2023 surpassed $52.3 billion and are forecasted to grow to more than $57 billion by 2026. The research also reveals trends across four categories of vehicles (Classic, Aged, Core and Modern), highlighting age, popularity, usage and consumer spending habits. For accessorizing, pickups and muscle cars are the top choice for enthusiasts. Meanwhile, vehicles in the Aged category are driving spending for performance products, as a way to refresh their older vehicle. Aftermarket product spending for Modern and Core vehicles was primarily (59% and 54%) on accessory and appearance products, while 43% of spending on Classic vehicles was for performance products. 
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By GreenGears Auto Limited
      The automotive industry is undergoing a profound transformation, driven by the synergistic forces of connectivity and autonomous driving. These technological advancements are poised to reshape the transportation landscape, promising safer, more efficient, and more accessible mobility solutions for individuals and societies alike.
      Connectivity, the ability of vehicles to communicate with each other and their surroundings, is laying the foundation for intelligent transportation systems that can revolutionize the way we navigate our roads. Autonomous driving, on the other hand, envisions a future where vehicles can operate without human intervention, offering the potential for unprecedented levels of safety and convenience.
      This in-depth exploration delves into the complexities of connectivity and autonomous driving, examining their underlying technologies, current progress, challenges, and the transformative impact they are expected to have on our world.
      The Evolution of Connectivity: From Isolated Vehicles to Interconnected Networks
      Historically, vehicles have been isolated entities on the road, relying solely on the driver's perception and decision-making. However, the advent of connectivity has transformed cars into sophisticated communication hubs, capable of gathering and exchanging vast amounts of data in real-time.
      This transformation has been made possible by a convergence of technological advancements, including:
      Sensor Technology: Vehicles are now equipped with a wide range of sensors, including cameras, radars, lidars, and ultrasonic sensors, that enable them to perceive their surroundings in detail. These sensors collect data about the vehicle's position, speed, proximity to other objects, and road conditions. Wireless Communication: Technologies like Dedicated Short-Range Communications (DSRC) and Cellular Vehicle-to-Everything (C-V2X) allow vehicles to communicate wirelessly with each other and with infrastructure elements like traffic lights and road signs. Cloud Computing and Data Analytics: The vast amounts of data generated by connected vehicles are processed and analyzed in the cloud, enabling real-time decision-making and the development of intelligent transportation systems. Types of Connectivity:
      Connectivity in the automotive realm manifests in various forms, each with its own distinct benefits:
      Vehicle-to-Vehicle (V2V) Communication: Enables direct communication between vehicles, allowing them to share information about their speed, location, and intended maneuvers. This creates a virtual awareness network, enhancing safety by alerting drivers to potential hazards and enabling cooperative driving behaviors.
      Vehicle-to-Infrastructure (V2I) Communication: Facilitates communication between vehicles and roadside infrastructure, such as traffic lights, road signs, and toll booths. This allows for optimized traffic flow, reduced congestion, and improved safety through real-time information sharing.
      Vehicle-to-Network (V2N) Communication: Connects vehicles to cloud-based services and applications, providing access to real-time traffic updates, navigation assistance, and other infotainment features.
      Vehicle-to-Pedestrian (V2P) Communication: Enables vehicles to communicate with pedestrians and cyclists, particularly in urban environments. This can enhance safety for vulnerable road users by alerting them to the presence of vehicles and potential dangers.
      Benefits of Connectivity:
      The widespread adoption of connectivity has the potential to unlock numerous benefits for individuals, society, and the environment:
      Enhanced Safety: By facilitating real-time data exchange and situational awareness, connectivity can help prevent accidents and reduce fatalities on the roads. Features like collision avoidance systems, lane departure warnings, and blind spot monitoring leverage connectivity to provide drivers with timely alerts and assistance.
      Improved Traffic Flow: Connectivity enables intelligent transportation systems to optimize traffic flow by adjusting signal timings, providing real-time traffic information, and recommending alternative routes. This can lead to reduced congestion, shorter travel times, and improved fuel efficiency.
      Enhanced Convenience and Comfort: Connected vehicles offer a plethora of features that enhance the driving experience, including:
      Remote vehicle access and control In-car entertainment and infotainment systems Personalized navigation and route optimization Real-time vehicle diagnostics and maintenance alerts Over-the-air software updates Environmental Sustainability: By optimizing traffic flow and promoting fuel-efficient driving behaviors, connectivity can contribute to reducing greenhouse gas emissions and improving air quality.
      The Path to Autonomous Driving: From Assisted to Fully Autonomous
      Autonomous driving, often referred to as self-driving technology, aims to automate the driving experience entirely, freeing drivers from the need to control the vehicle. This technology is being developed in stages, with increasing levels of autonomy, as defined by the Society of Automotive Engineers (SAE):
      Levels of Autonomous Driving
      Level Description 0 No automation. The driver is fully in control of the vehicle at all times. 1 Driver assistance. The vehicle provides limited assistance with tasks such as steering or accelerating, but the driver remains primarily in control. 2 Partial automation. The vehicle can control both steering and acceleration/deceleration under certain conditions, but the driver must remain alert and ready to take control at any time. 3 Conditional automation. The vehicle can perform all driving tasks under specific conditions, but the driver may still need to intervene in certain situations. 4 High automation. The vehicle can perform all driving tasks under most conditions, and the driver may be able to disengage completely. 5 Full automation. The vehicle can perform all driving tasks under all conditions, and there is no need for a human driver. Key Technologies Enabling Autonomous Driving
      The development of autonomous vehicles relies on a complex interplay of various technologies:
      Sensor Fusion: Combines data from multiple sensors like cameras, radars, and lidars to create a comprehensive and accurate picture of the vehicle's surroundings. Artificial Intelligence (AI) and Machine Learning: Enables the vehicle to perceive, interpret, and respond to its environment in real-time, making decisions based on complex algorithms and learned patterns. High-Definition Mapping: Provides detailed maps of the environment, including road layouts, lane markings, traffic signs, and other relevant information. Vehicle Control Systems: Actuators and control systems enable the vehicle to execute commands from the autonomous driving system, such as steering, accelerating, braking, and changing lanes. Current State of Autonomous Driving
      While fully autonomous vehicles (Level 5) remain a long-term goal, significant progress has been made in developing and deploying lower levels of autonomy.
      Advanced Driver-Assistance Systems (ADAS): Features like adaptive cruise control, lane keeping assist, and automatic emergency braking 1 are becoming increasingly common in new vehicles, representing Level 1 and Level 2 autonomy.   Robotaxis and Autonomous Shuttles: Several companies are testing and deploying autonomous vehicles in controlled environments, such as designated areas within cities or university campuses. These vehicles often operate at Level 4 autonomy, with limited human supervision. Commercial Applications: Autonomous trucks and delivery vehicles are being developed and tested for logistics and transportation applications, offering the potential for increased efficiency and reduced costs. Challenges and Concerns
      Despite the significant progress, several challenges and concerns remain on the road to fully autonomous driving:
      Technological Limitations: Current sensor technologies and AI algorithms still struggle to handle complex and unpredictable scenarios, such as adverse weather conditions, construction zones, or interactions with pedestrians and cyclists. Safety and Liability: Ensuring the safety of autonomous vehicles and determining liability in the event of accidents are critical concerns that need to be addressed through robust testing, validation, and regulatory frameworks. Public Acceptance: Gaining public trust and acceptance of autonomous vehicles will require addressing concerns about safety, job displacement, and the potential for misuse of the technology. Infrastructure: Widespread adoption of autonomous vehicles will necessitate significant investments in infrastructure, including intelligent transportation systems, high-definition maps, and communication networks. The Transformative Impact of Connectivity and Autonomous Driving
      The convergence of connectivity and autonomous driving has the potential to revolutionize the transportation sector and society as a whole:
      Improved Safety: By eliminating human error, which is a leading cause of accidents, autonomous vehicles have the potential to significantly reduce fatalities and injuries on the roads. Studies suggest that autonomous vehicles could reduce traffic fatalities by up to 90%.
      Increased Efficiency: Connected and autonomous vehicles can optimize traffic flow, reduce congestion, and improve fuel efficiency. This can lead to significant time and cost savings for individuals and businesses, as well as a reduction in greenhouse gas emissions.
      Enhanced Accessibility: Autonomous vehicles can provide mobility solutions for individuals who are unable to drive, such as the elderly or those with disabilities, enhancing their independence and quality of life.
      New Business Models: The advent of autonomous vehicles could give rise to new business models and services, such as ride-hailing, car-sharing, and delivery fleets. These models could transform the way we think about transportation, making it more accessible and affordable for everyone.
      Urban Transformation: Autonomous vehicles could lead to a redesign of urban spaces, with less need for parking lots and potentially more space for green areas and pedestrian zones.
      The Road Ahead: Navigating the Challenges and Opportunities
      The path to a fully connected and autonomous transportation future is filled with both challenges and opportunities. As technology continues to advance and regulatory frameworks evolve, we can expect to see a gradual but steady shift towards a more automated and interconnected transportation landscape.
      The automotive industry, along with governments, technology companies, and other stakeholders, will need to collaborate to address the challenges and ensure the safe and responsible deployment of these technologies. Public education and engagement will also be crucial in building trust.
       
      www.GreenGearsAuto.com
    • Sell your car with CarBrain
    • By Counterman
      link hidden, please login to viewannounced the addition of 55 new part numbers to its hose, water pump and drive system kit lines. The new product introductions include 41 new branched and quick connect hoses, covering primarily medium- and heavy-duty vehicle applications, 11 new water pumps and 3 new serpentine belt kit part numbers that allow Dayco to provide expanded coverage for millions of vehicles on the road, according to the company. The company said that for the past 18 months, Dayco’s product management team has significantly transformed its hose product line following a detailed evaluation of more than 3,000 part numbers, adding new numbers with exact fitment and redesigning old hose applications when necessary. Dayco said its hoses, which are designed to meet or exceed all relevant OE and SAE standards, feature spiral reinforcement for high burst strength and excellent heat resistance.
      The 11 new
      link hidden, please login to viewwater pump SKUs being introduced will cover 22 million light-duty vehicles on the road. Dayco added that its serpentine belt kit line is also expanding as the company continues developing innovative system solutions and recommending all drive system components be changed at the same time to improve performance and reduce comebacks. Coverage for over 3 million VIO was added in February and an additional 2+ million VIO will be covered with the three new kits. “We have continued to evolve our line review process to assure that we efficiently bring to market products the industry needs based on real data and input from the field,” said Jerry Reeves, manager of product management for Dayco North America. “This is just an example of the type of expansions you’ll continue to see from the Dayco team.”
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

×
  • Create New...