Quantcast
Jump to content

general heavy-duty 728x90


general heavy-duty 468x60


general heavy-duty 250x250

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn. 

     

The Inconvenient Truth About Electric Vehicles


Recommended Posts

Electric vehicles, specifically those that are 100% battery powered (BEVs) have everyone “amped up” and anxious to get the most “current” projections on sales, share of the car parc and long-term impact on the aftermarket parts and service business. The impact of BEVs will be felt slowly over a very long time. But the time to get educated and prepared is now.

Beginning with the joint industry report at AAPEX from the Auto Care Association and AASA and continuing with presentations at the AASA Technology Council and Vision conference this spring, forecasts about BEV sales and their trajectory of market share have fascinated and frightened those who grew up with and depend upon the Internal Combustion Engine (ICE) for their livelihood. The consensus I heard is that the demise of the internal combustion engine has been exaggerated and the growth forecasts of BEV market share are optimistic considering the limits of current battery technology, tepid consumer demand resulting from the high cost, and shortcomings in charging infrastructure and the electric grid.

There is no secret that CO2 emissions are responsible for changing the chemistry of our atmosphere and warming the planet, and vehicle tailpipe emissions are a major contributor to the problem. So, every alternative form of vehicle propulsion has been thoroughly explored in the last decade and Lithium-Ion batteries are the leading technology for the time being. Tailpipe emissions from the vehicle are eliminated, there’s instant and plentiful torque and the new models are even starting to look cool.

But, BEV adoption has lagged below the projections of futurists and will continue to face a number of challenges and headwinds. To put this in perspective, BEVs in the U.S. account for barely 1% of the fleet in 2021. That market share will double to 2% in 2025. By the end of this decade, BEVs will account for 6% of the domestic parc — and the vast majority of those will still be under factory warranty. It won’t be until 2035 that the BEV share rises to double digits. These numbers are from the joint industry report issued at AAPEX and represent the Base Adoption scenario. The numbers could be lower if development and investment lag, or they could be higher under the rosiest of assumptions.

A few inconvenient truths about battery-powered vehicles have jumped out at me from my research:

1) Consumers have expressed reluctance to invest in a BEV unless their range-anxiety is satisfactorily addressed, and they can confidently head out on a road trip without the need to plan their itinerary around rest stops at the charging station. Derek Kaufman from Schwartz Advisors told the AASA Vision Conference audience that the government has a goal of investing $5 billion on an additional 500,000 charging stations. That’s great, but the need is for 4X that number. Until the number of charging stations is dramatically increased, depending on a BEV will require changes to driving and consumer behavior.

2) Current battery technology can be charged with standard household current. But, it takes all night, and the full range potential is not achieved. Fast-charging DC stations typically cost 3 to 4 times as much per KWh limiting their use unless absolutely necessary. Brian Daugherty, chief technology officer at MEMA, explained that a typical home consumes 1.2 kilowatts (KW) per hour on average. A direct current (DC) fast charger on the side of the interstate uses 300 KW or the equivalent demand on the grid of 250 homes. Imagine your favorite rest stop equipped with a couple dozen charging stations on Memorial Day weekend with everyone plugged in for a fast charge to get them to the beach. The entire East Coast will go dim.

3) Just as concerning as the infrastructure is the source of the minerals that go into modern batteries. China controls 70-80% of the lithium, cobalt, manganese, nickel and graphite use in electrodes and Russia produces more than 20% of battery-grade nickel. Half of the cobalt is supplied from the Republic of the Congo, with a dismal record of child-labor abuses. But, battery technology is rapidly advancing and professor and inventor John Goodenough, who is credited with inventing the current state-of-the-science Lithium-Ion battery, recently co-developed a rapid-charging, high-cycle, non-flammable glass battery. Years of testing and development are needed to prove the viability of this tech in automotive applications. But, apparently, the 2019 Nobel Prize winner for Chemistry did not think Lithium-Ion battery technology was … Good Enough.

4) Finally, it is worth remembering that switching from a gasoline ICE to a BEV that plugs into the electric grid is simply a trade off from tailpipe emissions to smokestack emissions until we have a much higher portion of our electricity supplied from renewable sources (solar, hydro and wind). Even in our current position, battery electric cars generate only 50% of the emissions of a comparable gasoline vehicle, even when battery manufacturing is included in the calculation, according to Cultura.org.

With all that said, battery electric vehicles are here to stay, and their share of the market will slowly increase. Costs will come down, range and performance will go up, and the investment of the OEMs and the government will ensure that electrics command a significant share of our transportation system in the future. Internal combustion engines are not facing extinction and will remain relevant to hybrid vehicles, heavy equipment and large SUVs and trucks for many decades. As Kaufman explained, electrics will be the preferred solution for small package delivery fleets, autonomous urban vehicles and fleet-shared transportation solutions. The best thing for an aftermarket parts or service business with an eye on the long game is to take your local Avis, Uber or Waymo executive out to lunch and talk about their need to eliminate underperformed maintenance and deliver 100% up-time with a reliable supply of aftermarket parts.

The aftermarket should do what we’ve always done when faced with something new and uncertain, adapt and pay attention. Change is coming faster than ever, but we are Essential — regardless of the propulsion technology.

The post

link hidden, please login to view
appeared first on
link hidden, please login to view
.

link hidden, please login to view

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Topics

    • By Counterman
      BMW, Porsche, Mini, Mercedes-Benz, Volkswagen, Audi. You’re probably familiar with these brands, but how familiar are you with their parts?
      European vehicles need repairs just as often as American or Asian vehicles, if not more often. They also boast an extremely strong following among tuning enthusiasts. You’re almost guaranteed to find modified VWs, Audis and BMWs at just about any car show or meet you pull up to.
      So, what is it that sets these vehicles apart from the rest? Let’s take a look at what makes these vehicles so desirable to owners, and what we as parts pros need to know in order to help them buy the right parts for their needs.
      German Engineering
      Yes, that’s a reference to Volkswagen’s advertising campaign from the mid-2000s. These commercials capitalized on the popularity of automotive TV shows like “Pimp My Ride” and “Overhaulin.” They were cheesy, over the top and downright funny.
      All jokes aside, there’s something special about the phrase “German engineering.” German automakers have long led the industry with pioneering and innovative technology. The Benz Patent-Motorwagen (“patent motorcar”) was built in 1885 by the German Carl Benz, so you could say that cars were invented by the Germans – but it didn’t end there. Nearly every modern automotive system has been influenced or refined by German engineering and innovation: everything from seat belts to air bags, adaptive cruise control to antilock brakes and traction/stability control. The list goes on and on.
      There’s another trait that I associate with German engineering (and all European vehicles), but it comes in the form of an expression: “10 pounds of stuff in a 5-pound bag.” While it seems that cars aren’t getting any bigger, automakers are finding ways to fit more and more systems, parts and control modules into them than ever before.
      If you’ve ever looked under the hood of an Audi S6 or S7 with the 4-liter turbocharged V-8 engine (pictured above), you’ll know what I’m talking about. These engines don’t look like any other V-8 engine in the world, and they’re a good example of how creative automakers have to be in order to fit their powerplants into modern vehicles.
      Complexity
      There are, of course, a few drawbacks to this sort of innovation and creativity: namely, complexity. Complex systems tend to utilize more individual parts, and this means that they may be more vulnerable to part failures. What we mean by this is the more hoses, pipes or connectors automakers add to vehicles, the more likely it is that any of these parts could leak or fail and need to be replaced.
      Let’s look at an example of this complexity: the cooling circuit from an S55-powered BMW M3 or M4 (Fig. 1). This diagram shows the number of hoses, pipes and heat exchangers that are needed to cool the engine, the incoming charge air and the engine oil. While this system is designed to hold up to a lot of abuse, a single faulty connection or leaking hose could cause a breakdown.
      Lightweight Materials
      Plastics and composite parts are replacing steel and aluminum parts in the interest of weight savings and fuel economy. Unfortunately, this sometimes comes at the cost of durability. The turbocharged 1.8-liter and 2-liter engines found in modern VWs and Audis feature radiator hoses with plastic connectors on either end. These connectors are known to become brittle and crack after years of heat-cycling under the hood. You might find that the lower radiator hose on these same engines has a coolant-temperature sensor built into the connector in the interest of saving space.
      Plastic isn’t the only lightweight material being used by modern automakers. The bolts that secure the thermostat to the water pump on the N54-powered BMW 335i are aluminum and cannot be reused once they’re removed. Aluminum bolts also are used to secure the transmission pan on the Mercedes-Benz 722.9 seven-speed automatic transmission.
      As parts professionals, it’s our responsibility to always “sell the whole job” to our customers. If a customer comes in for a radiator because the original one cracked, you should suggest that they replace other parts such as the hoses, since they may be just as brittle as that radiator was when it failed. If your customer is replacing a component that’s secured with aluminum bolts or hardware, be sure to sell it to them so they have everything they need before they start the repair.
      Remove and Discard
      Let’s dive deeper into hardware, because it’s especially important on European vehicles. Torque-to-yield (TTY) fasteners are far more common on these applications, used everywhere from suspension points to drivetrain mounts, and everything in between. TTY fasteners are torqued to extremely high values. This literally causes the bolts to stretch nearly to the breaking point, but in exchange it’s able to apply the maximum clamping force possible. Since these bolts are stretched out when torqued, they should not be reinstalled, as they could snap when tightened.
      Fasteners with locking splines or nylon locking rings, or pre-applied threadlocking compounds, help to prevent them from loosening. These types of fasteners are rather common in European applications, and most cannot be reused once installed.
      It’s always a good idea to check your parts catalog for suggested hardware, and then pass that information to your customer. If you come across a repair in which you needed to replace the hardware, share that experience with your co-workers. Sharing your combined experiences will only benefit you, your team and your customers.
      Double Vision
      I’d like to conclude with a unique example I found while working on a 2017 BMW M4 with the S55 inline-6 engine. The vehicle was in for a boost-tap install so the customer could monitor boost pressure from a gauge mounted in the A/C vent. The boost tap was a billet aluminum spacer that mounted between the MAP sensor and the intake manifold. A hose connected the boost tap to a gauge inside the vehicle. The customer had installed the boost tap, but it was only reading boost pressure, not engine vacuum.
      During a visual inspection I quickly spotted the problem: The boost tap had been installed into the wrong location. There are actually two MAP sensors on this engine: One is located on the charge-air cooler on top of the engine, and the other is mounted on top of the intake manifold.
      The MAP sensor on top of the intake manifold is almost impossible to see because the charge-air cooler is in the way, but it’s the only one capable of reading engine vacuum since it’s located after the throttle body. This was a quick and easy fix, but it’s a good example of how easy it can be to miss something obvious in such a busy engine compartment.
      Redundant sensors can be common in European vehicles like the M4 from this example. So, be sure to ask your customer the right questions and really get to the bottom of what it is that they’re working on, and what they need to fix it right the first time.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      First Brands Group has introduced new part numbers to its premium-quality Raybestos line in the categories of brake friction, rotors, calipers, master cylinders and brake cables. 
      More than 100 new Raybestos part numbers are now available for domestic and international nameplate late-model and luxury vehicles, including 2020, 2021 and 2022 coverage for Buick, Ford, Honda, Hyundai, Jaguar, Jeep, Mazda, Mercedes-Benz, Nissan, Ram, Scion and Toyota.  
      The just-released parts include Raybestos Police brake-pad coverage for 2021 and 2022 Ford Explorer and Police Interceptor utility vehicles, as well as new coated-rotor numbers for popular 2022 truck, SUV and passenger-car applications, including Ford F-150, Nissan Sentra and Honda CR-V.
      “We are always proud to introduce new part numbers and this time is no exception,” said Kristin Grons, director of marketing, First Brands Group. “With the introduction of specialty brake pads for in-demand police vehicles, coated-rotor coverage for newer passenger vehicles, and a wide range of carry-up coverage, our customers will have the Raybestos parts they need for more late-model vehicle repairs.”
      The complete family of Raybestos brake products include disc pads and shoes, drums and rotors, master cylinders, wheel cylinders, calipers, hubs, hoses, and hardware. To learn more about new part numbers and their applications, customers should contact their First Brands Group representative.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Philips MasterDuty headlight bulbs, from Lumileds, are the latest innovation in forward lighting for commercial vehicles.
      “Built to deliver exceptional and long-lasting lighting performance on Class 2 through 8 commercial vehicles, Philips MasterDuty lamps are designed to provide the ultimate protection against mechanical shock and easily handle the extreme stress and vibration of rough terrain and damaged roadways,” the company said in a news release. “Philips MasterDuty lamps are the toughest available for the medium- and heavy-duty truck market.”
      Built to resist up to 13G, the bulbs’ key benefit is their exceptional vibration resistance, according to the company. Philips MasterDuty bulbs have been engineered to withstand a wide range of vibration frequencies and feature a high-performance glass construction that easily handles extreme temperature and pressure changes.
      “Our MasterDuty line gives commercial-fleet operations an excellent advantage with extremely durable and long-lasting bulbs that not only helps save on maintenance costs, but also helps protect drivers by keep them in compliance,” said Aubry Baugh, Lumileds product marketing manager.
      The Philips MasterDuty headlight range includes seven new SKUs for exceptional coverage on medium- and heavy-duty applications: H1MDC1, H7MDC1, H11MDC1, 9003MDC1, 9005MDC1, 9006MDC1 and 9008MDC1 forward lighting applications.
      For more information, contact [email protected] or call 866-254-6989.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

    • DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.

    • By Counterman
      In a recent Deloitte survey, 69% of Americans indicated that the internal-combustion engine (ICE) is their preferred powertrain for their next vehicle purchase.
      As part of its 2022 Global Automotive Consumer Study, Deloitte surveyed more than 26,000 consumers in 25 countries to explore opinions regarding a variety of critical issues impacting the automotive sector, including the development of advanced technologies. Deloitte conducted the survey from September through October 2021.
      The United States led the way in terms of consumer interest for ICE vehicles. In Southeast Asia, 66% of consumers said they prefer ICE powertrains over EVs for their next vehicle purchase, while 58% of survey respondents in China and India shared the same sentiment.
      The survey found that consumer interest in battery electric vehicles is highest in South Korea (where 23% of respondents said they intend to buy one), China and Germany, while Japanese consumers prefer hybrid electric vehicles.
      In the 2022 study, four key trends continued to emerge, according to Deloitte:
      Willingness to pay for advanced technologies remains limited. Interest in electric vehicles is driven by lower running costs and better experience. In-person purchase experiences are still preferred by many. Personal vehicles continue to be the preferred mode of transportation. To download the full report, visit
      link hidden, please login to view. The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
×
  • Create New...