Quantcast
Jump to content

DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn. 

     

Ignition Lock Cylinder Replacement (GM cars w PASSkey theft systems)


Recommended Posts


DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Content

  • Similar Topics

    • By Counterman
      Continental’s line of ATE replacement brake fluids feature special formulations designed to help maximize brake-system performance in all types of electronic, hydraulic and racing systems.
      The full line includes ATE Super DOT 5.1, the technological standard for brake fluids; ATE SL.6 Brake Fluid, the ideal replacement for ESP, ABS and ASR electronic brake systems; ATE SL for hydraulic brake and clutch systems; and ATE TYP 200 for high-performance and racing applications.
      ATE Super DOT 5.1 Premium Brake Fluid’s formulation sets a new performance standard for brake fluids, according to Continental. It combines a high wet boiling point of 356 F with outstanding viscosity at very low temperatures to deliver a capability that previous brake fluids were unable to achieve. With a maximum of 750 mm²/sec. at minus 40 F, ATE Super DOT 5.1 viscosity values exceed even those of ISO Class 6, which are well above the specifications for DOT 5.1 class brake fluids, according to the company.
      ATE SL.6 brake fluidis the optimum replacement for DOT 4 fluid in ESP, ABS and ASR brake systems. Its low-viscosity texture allows electronic brake systems to react more quickly for improved safety. ATE SL.6 offersexcellent application coverage for the advanced braking systems used in high-end vehicle makes and models.
      ATE SL brake fluidis an excellent DOT 4 replacement for use as hydraulic fluid in brake and clutch systems. It features a mixture of polyethylene glycol ethers, polyethylene glycols and boric acid esters of polyethylene glycols with anti-corrosion/anti-aging agents. ATE SL meets and exceeds the requirements of the brake-fluid standards FMVSS-No. 116 – DOT 4, SAE J1704 and ISO 4925, Class 4, among others.
      ATE TYP 200 brake fluid exceeds all DOT 4 standards and excels under the extreme demands of high-performance driving. Compatible with all DOT 3, DOT 4 and DOT 5.1 brake fluids, the formula delivers a minimal drop in boiling point due to outstanding water-binding properties that result in a long-lasting fluid that can provide optimal performance for up to three years under normal highway driving conditions, according to Continental. The high wet and dry boiling points make this fluid an excellent choice for street-driven vehicles as well.
      “ATE brake fluids are the result of many years of experience and expertise in developing OE brake systems,” notes Dan Caciolo, head of product management at Continental. “The viscosity, boiling point and pressure behavior of our fluids interact perfectly to allow the braking system to react quickly and reliably in any application. Our boiling points and viscosity exceed legal specifications, while our high-quality additives help deliver outstanding corrosion protection and optimum compatibility with brake system’s sealing materials.”
      ATE is an aftermarket brand of Continental. For more information, visit
      link hidden, please login to view or contact [email protected] The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Who remembers having your driving instructor tell you to  “pump the brakes” when stopping on slippery roads? If you raised your hand, congratulations – you’re over the hill like me!
      The purpose of pumping the brakes was to humanly perform what an ABS does. You apply the brakes just to the point where the tires begin to slip on the road surface, then release and reapply pressure as quickly as possible. You simply do this over and over again, all in a split second. And if it’s an emergency, you calmly steer around the danger as adrenaline rushes through your veins and your heart rate skyrockets. No problem, right?
      Well, I think you can see the problem. And, what if one tire is on ice and the other isn’t? There goes the steering, and there’s no fancy footwork that can overcome that.
      So, what was the solution? Antilock braking systems (ABS). When they were first developed, the intention was that a driver could maintain directional control of a vehicle under extreme braking (when a wheel locks up, steering control is lost). The fact that ABS stops a vehicle quicker in a straight line (though not an unexpected result) was just a bonus.
      ABS Operation
      ABS initially was a dedicated braking system, but the signals from the wheel-speed sensors (WSS) quickly proved useful for traction- and stability-control systems, and on some vehicles the signals also are utilized by the powertrain control module for other functions. It can seem complicated, but for the practicality of parts and service, we can leave that end of it to the engineers who design the systems.
      Functionally, ABS is one of the easier systems to understand, and we can break it down into three main areas: the WSS, the ABS control module and the ABS modulator.
      Each WSS generates a signal proportionate to wheel speed and sends that signal to the ABS control module. The WSS works in conjunction with a reluctor wheel, which is a toothed wheel that is fixed on a component rotating at wheel speed. This allows the WSS to generate a signal through electromagnetic or Hall-effect principles.
      The ABS control module is the computer that monitors the WSS signals, decides what to do and when, and sends output commands to the ABS modulator.
      The ABS modulator is the hydraulic unit of the ABS system that contains the ABS pump and valving. The regular state of the valves allows hydraulic pressure from the brake master cylinder to pass through for normal braking. If, during braking, the ABS control module receives a signal from one or more WSS that indicates a wheel is losing traction (locking up), it sends a signal to the ABS modulator, and the valve for that given wheel closes to prevent additional hydraulic pressure from being applied.
      If the wheel continues to lose traction, the valve then will release the pressure on that given wheel. The pressure is released to prevent wheel lock-up, but the pressure must be reapplied immediately for proper braking and steering control. This is when the ABS pump turns on to create the necessary hydraulic pressure for this to happen. Not too bad so far, right?
      ABS Repair and Diagnosis
      When it comes to repair, the vast majority of the time, real-world ABS problems are caused by nothing more than the fact that one or more of the wheel-speed signals received by the ABS control module is incorrect. Depending on the nature of the errant signal, the ABS control module responds by either actuating ABS function when it is not required, or by storing a diagnostic trouble code (DTC) and turning on the ABS warning light.
      Taking it one step further, the vast majority of errant wheel-speed signals are caused by either wiring issues such as a broken wire or resistance in a connector; a WSS that is not positioned properly to pick up the signal from the reluctor wheel; or, in some cases, a missing or damaged reluctor wheel. A WSS can go bad, of course, but it’s less common than a related mechanical or electrical issue that affects the ability of the sensor to get its signal to the ABS control module.
      If you’re playing the role of technician and a customer is asking you to help with their self-diagnosis of an ABS issue, they’re not going to get anywhere without a scan tool. Luckily, there are some basic scan tools that have just the right functions. In the case of ABS, if you can view DTCs and wheel-speed data, you’re most likely going to have all you need. If there’s a DTC stored, this provides the initial information to begin diagnosis. For example, a DTC may be “RF wheel-speed sensor implausible signal.”
      Wheel-speed data allows you to see the reported speed from each sensor. If everything is working correctly, you can watch the speed of each wheel as you slow down, and all four should read the same: 10, 9, 8, 7 … all the way down to zero, almost.
      There’s a catch. For a long time, most wheel-speed sensors were considered “passive” sensors, which generated their own electrical signal when the vehicle was in motion. These sensors aren’t able to generate and send a signal below 3 or 4 mph, so seeing the reading drop off at low speeds is normal. But, when compared to the others, if one drops off earlier, then you have identified a problem area, and just need to determine why.
      Whereas passive sensors generate their own signal, active sensors receive a reference voltage and work like a Hall-effect sensor, so they’re able to provide a wheel-speed reading all the way down to zero. This ability improves ABS performance at low speeds and has made them more common. Either way, wheel-speed data is the primary diagnostic focus for ABS systems.
      Selling ABS Components
      Scan Tools
      If you stock basic scan tools and you offer one with ABS functions, borrow one and try it out. It’s fun to see the ABS data and see first-hand how you can relate it to ABS operation. Plus, when you’re talking to a customer, it gives you the upper hand in knowledge to sell them on one. It’s a good investment, because if they’re keeping and maintaining an older vehicle and there’s one problem now, there will be another down the road.
      Electrical Repairs
      Wiring problems are incredibly common, and it’s usually right down near the wheel. The ABS harness might have worn from age, but this isn’t too common. More often, something off the road has damaged it, or it wasn’t properly installed and rubbed against a wheel or other suspension component. The best practice is to always advise your customer to replace the sensor with a new harness (most sensors have an integrated harness that connects to the main harness just inside the wheel well). The reason is that any repair eventually will have an effect on circuit resistance, and like any computer-related circuit, even the slightest increase in resistance can cause a problem.
      There always will be times when a customer will forego a sensor and opt for a repair, but this still is an opportunity to sell them the tools and supplies they might need – such as wire strippers/crimpers; extra wire; butt connectors; solder; a soldering gun; heat-shrink tubing; and electrical tape.
      Using butt connectors to repair the harness is temporary at best. Although butt connectors are acceptable for some electrical repairs, in this case it introduces a rigid area into a harness that needs to flex due to suspension and steering movements. Each end of this rigid section is now more susceptible to breaking. The ideal repair – although still never considered “permanent” – is to solder a very small, short (approximately 1 mm) section of the wires, then seal the repair with heat-shrink tubing. The more precise you can be, the less rigidity you will introduce into the harness, and the longer it will last.
      Wheel Bearings
      Generally speaking, wheel bearings have nothing to do with ABS, but in some cases, the reluctor wheel is part of the wheel bearing. Some vehicles have press-in style wheel bearings that appear identical on both sides, but one side has a reluctor and one doesn’t. Pressing this style of wheel bearing in wrong is a common mistake, and with no reluctor wheel by the WSS, there is no way of generating a WSS signal.
      Even on an older vehicle, when someone is replacing a wheel bearing, be sure to ask if it has ABS. It may or may not be relevant depending on the vehicle, but better to ask and avoid the potential for a problem. Along the same lines, if you sell a bearing that appears as if it could install either way and the vehicle has ABS, make sure to determine if it is indeed a bearing with an internal reluctor wheel.
      On wheel-bearing/hub assemblies that are more common today than the press-in style, most of the time the ABS sensor comes with the assembly. Often the customer doesn’t notice the worn, loose wheel bearing until it affects the ABS sensor, and they may think the ABS sensor itself is the problem. If the ABS sensor is available separately, be sure and caution them that a bad wheel bearing may have caused the problem in the first place, and they should check it if they’re not sure.
      CV Shafts
      The same holds true here. Generally, a CV shaft has nothing to do with ABS, except that many of them have the reluctor ring on the outboard CV joint. Always ask if a car has ABS when ordering a CV shaft, just to make sure you get the right component. Since CV shafts often fit more than one application from the same manufacturer, it’s common for them to all be made with reluctor wheels simply to avoid the problem in the first place. If the car doesn’t have ABS or if the reluctor is in the wheel bearing, the reluctor on the CV joint does no harm or it can be removed.
      Flush Brake Fluid
      Brake-fluid flushes often are ignored, and while problems with ABS modulators are uncommon, when they do arise, it’s frequently because the brake fluid wasn’t flushed. It’s always a good service to recommend.
      Tires
      Why tires? If someone has installed the wrong-size tire in one location, guess what immediately changes? Wheel speed. I think you know
      the rest.
      Sensors
      ABS sensors generally are easy to sell because we look them up by application and there are no other factors involved. You can take advantage of additional sales and save your customer time when sensors have to be removed during the course of another repair. Many sensors fit into a hole, and after a few years of driving, they might as well be welded in place. ABS sensors frequently need to be replaced simply because they’ve been destroyed during removal.
      All in all, ABS isn’t too complicated, so you can be comfortable helping your customers understand how it works. Getting them all the right parts and giving them good advice is what brings them back.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Ignition Coil Pack Factory
      China Electrical Car Parts Ignition Coil Factory Wholesale Ignition Coil Pack Car Parts in OE Quality. Best Car Engine Ignition Coil Wholesale from Car Parts Manufacturer Online.
    • By Counterman
      BMW, Porsche, Mini, Mercedes-Benz, Volkswagen, Audi. You’re probably familiar with these brands, but how familiar are you with their parts?
      European vehicles need repairs just as often as American or Asian vehicles, if not more often. They also boast an extremely strong following among tuning enthusiasts. You’re almost guaranteed to find modified VWs, Audis and BMWs at just about any car show or meet you pull up to.
      So, what is it that sets these vehicles apart from the rest? Let’s take a look at what makes these vehicles so desirable to owners, and what we as parts pros need to know in order to help them buy the right parts for their needs.
      German Engineering
      Yes, that’s a reference to Volkswagen’s advertising campaign from the mid-2000s. These commercials capitalized on the popularity of automotive TV shows like “Pimp My Ride” and “Overhaulin.” They were cheesy, over the top and downright funny.
      All jokes aside, there’s something special about the phrase “German engineering.” German automakers have long led the industry with pioneering and innovative technology. The Benz Patent-Motorwagen (“patent motorcar”) was built in 1885 by the German Carl Benz, so you could say that cars were invented by the Germans – but it didn’t end there. Nearly every modern automotive system has been influenced or refined by German engineering and innovation: everything from seat belts to air bags, adaptive cruise control to antilock brakes and traction/stability control. The list goes on and on.
      There’s another trait that I associate with German engineering (and all European vehicles), but it comes in the form of an expression: “10 pounds of stuff in a 5-pound bag.” While it seems that cars aren’t getting any bigger, automakers are finding ways to fit more and more systems, parts and control modules into them than ever before.
      If you’ve ever looked under the hood of an Audi S6 or S7 with the 4-liter turbocharged V-8 engine (pictured above), you’ll know what I’m talking about. These engines don’t look like any other V-8 engine in the world, and they’re a good example of how creative automakers have to be in order to fit their powerplants into modern vehicles.
      Complexity
      There are, of course, a few drawbacks to this sort of innovation and creativity: namely, complexity. Complex systems tend to utilize more individual parts, and this means that they may be more vulnerable to part failures. What we mean by this is the more hoses, pipes or connectors automakers add to vehicles, the more likely it is that any of these parts could leak or fail and need to be replaced.
      Let’s look at an example of this complexity: the cooling circuit from an S55-powered BMW M3 or M4 (Fig. 1). This diagram shows the number of hoses, pipes and heat exchangers that are needed to cool the engine, the incoming charge air and the engine oil. While this system is designed to hold up to a lot of abuse, a single faulty connection or leaking hose could cause a breakdown.
      Lightweight Materials
      Plastics and composite parts are replacing steel and aluminum parts in the interest of weight savings and fuel economy. Unfortunately, this sometimes comes at the cost of durability. The turbocharged 1.8-liter and 2-liter engines found in modern VWs and Audis feature radiator hoses with plastic connectors on either end. These connectors are known to become brittle and crack after years of heat-cycling under the hood. You might find that the lower radiator hose on these same engines has a coolant-temperature sensor built into the connector in the interest of saving space.
      Plastic isn’t the only lightweight material being used by modern automakers. The bolts that secure the thermostat to the water pump on the N54-powered BMW 335i are aluminum and cannot be reused once they’re removed. Aluminum bolts also are used to secure the transmission pan on the Mercedes-Benz 722.9 seven-speed automatic transmission.
      As parts professionals, it’s our responsibility to always “sell the whole job” to our customers. If a customer comes in for a radiator because the original one cracked, you should suggest that they replace other parts such as the hoses, since they may be just as brittle as that radiator was when it failed. If your customer is replacing a component that’s secured with aluminum bolts or hardware, be sure to sell it to them so they have everything they need before they start the repair.
      Remove and Discard
      Let’s dive deeper into hardware, because it’s especially important on European vehicles. Torque-to-yield (TTY) fasteners are far more common on these applications, used everywhere from suspension points to drivetrain mounts, and everything in between. TTY fasteners are torqued to extremely high values. This literally causes the bolts to stretch nearly to the breaking point, but in exchange it’s able to apply the maximum clamping force possible. Since these bolts are stretched out when torqued, they should not be reinstalled, as they could snap when tightened.
      Fasteners with locking splines or nylon locking rings, or pre-applied threadlocking compounds, help to prevent them from loosening. These types of fasteners are rather common in European applications, and most cannot be reused once installed.
      It’s always a good idea to check your parts catalog for suggested hardware, and then pass that information to your customer. If you come across a repair in which you needed to replace the hardware, share that experience with your co-workers. Sharing your combined experiences will only benefit you, your team and your customers.
      Double Vision
      I’d like to conclude with a unique example I found while working on a 2017 BMW M4 with the S55 inline-6 engine. The vehicle was in for a boost-tap install so the customer could monitor boost pressure from a gauge mounted in the A/C vent. The boost tap was a billet aluminum spacer that mounted between the MAP sensor and the intake manifold. A hose connected the boost tap to a gauge inside the vehicle. The customer had installed the boost tap, but it was only reading boost pressure, not engine vacuum.
      During a visual inspection I quickly spotted the problem: The boost tap had been installed into the wrong location. There are actually two MAP sensors on this engine: One is located on the charge-air cooler on top of the engine, and the other is mounted on top of the intake manifold.
      The MAP sensor on top of the intake manifold is almost impossible to see because the charge-air cooler is in the way, but it’s the only one capable of reading engine vacuum since it’s located after the throttle body. This was a quick and easy fix, but it’s a good example of how easy it can be to miss something obvious in such a busy engine compartment.
      Redundant sensors can be common in European vehicles like the M4 from this example. So, be sure to ask your customer the right questions and really get to the bottom of what it is that they’re working on, and what they need to fix it right the first time.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

    • DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.

    • By Counterman
      Continental has expanded its line of vehicle camera systems.
      Continental’s new Platform AHD (analog high-definition) camera systems are designed to enhance the driver’s view and improve fleet efficiency.
      Built to support drivers when navigating complex situations such as tight warehouse aisles, busy constructions sites or crowded shipping facilities, these camera systems provide vehicle operators with the extended visibility they need to get a better view of their surroundings and make their operations safer, according to the company.
      Continental’s AHD camera systems feature 2-megapixel cameras with high image clarity and infrared lights for enhanced night vision. The camera line includes rear-view and front- and side-view cameras. The displays work with both CVBS and AHD camera inputs. Video can be stored in a DVR for future driver analysis and training.
      Offered with 7-inch and 10.1-inch AHD displays, the AHD camera systems can integrate seamlessly with Continental ultrasonic sensors to deliver back up detection that warns the operator of obstacles behind the vehicle. The cameras feature IP 67 enclosures that are waterproof and dust-tight. The systems are available with dual voltage (12-volt and 24-volt) and offered in different cables sizes.
      For more information, visit
      link hidden, please login to view or contact [email protected] The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
×
  • Create New...