Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, X, and LinkedIn. 

     

Coolant Sealers Can Save Thousands Of Dollars


Recommended Posts

Coolant Sealers

One of the best money-saving products that’s ever been invented is cooling system sealer. Most products will successfully seal minor coolant leaks to stop the loss of coolant that leads to engine overheating. Specially formulated “head gasket” sealers also can stop many head gasket leaks and save your customer thousands of dollars in expensive engine repairs. What’s more, coolant sealers also can be added to the coolant as a preventive measure to plug small leaks before they turn into big ones.

Coolant leaks can occur anywhere in the cooling system, including the water pump, hoses, radiator, heater core, thermostat housing, expansion plugs, head gasket, combustion chamber or cylinder block. Regardless of where a leak occurs, the end result is always the same: coolant loss that sooner or later allows the engine to overheat.

Overheating is bad news because excessive heat causes metal to expand beyond normal limits and clearances. The result can be piston scuffing, cylinder scoring, valve sticking, damaged valve guides and even warped cylinder heads. Overheating also can crush an otherwise good head gasket, causing the gasket to leak when the radiator is refilled with coolant.

Most cooling system sealers can seal small pinhole leaks in radiators and heater cores as well as hairline cracks where the core and end tanks are joined, and porosity leaks in aluminum cylinder heads and blocks. Products designed to seal more serious leaks also can delay or even eliminate the need to replace a head gasket or heater core (both of which are expensive labor-intensive repair jobs). Stopping a water pump shaft seal leak, however, or a large leak in a hose is beyond the capabilities of most products.

The key to selling cooling system sealers is to match the product with the leak your customer is trying to stop. And the keys to a successful repair are choosing the right product and then following the directions on the label.

Step one is to figure out what’s leaking. Is it the radiator, heater core, water pump or a bad hose? Head gasket leaks are harder to diagnose because leaks are usually internal rather then external. A mysterious loss of coolant with no puddles under the vehicle or obvious signs of leakage under the hood often indicates a leaking head gasket, or in some cases a leaky radiator pressure cap.

A head gasket leak can be confirmed by pressure-testing the cooling system, using a chemical test strip that detects the presence of combustion gases in the coolant, or by checking the dipstick for signs of coolant in the oil (yellowish gunk on the dipstick). Radiator caps also can be pressure-tested to see if the cap holds its rated pressure. If it can’t, replace the cap.

Sometimes, leaky hose connections can be fixed by simply tightening or replacing the clamp. But if a hose is dripping or spraying coolant, replacing the hose is the recommended repair. Same for a leaky water pump.

If a leak is something that a coolant sealer has a good chance of stopping, select a product that is formulated for that type of leak (read the label). Tell your customer to follow the directions for how the product should be used and what, if any, additional steps are recommended to ensure a successful seal.

In most cases, the sealer is added to the radiator or coolant reservoir. Makeup coolant then is added and the engine is started so the sealer and coolant can circulate until the leak stops. Additional coolant may be required after the engine has reached operating temperature and cooled back down.

Caution: Customers should be warned to NEVER open a radiator cap on a hot engine. Steam can blow out and cause serious burns. Wait until the engine has cooled before opening the cap.

Source: 

link hidden, please login to view

  • Thanks 1
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Mighty Auto Parts
      The post
      link hidden, please login to view appeared first on link hidden, please login to view. The 2013 Ford F150 equipped with a 3.5L EcoBoost engine was running perfectly. With the exception of a drop in fuel economy, there was no indication of a problem until the Check Engine light in the dash illuminated. A system scan revealed P2098 code stored in memory, which represents Post Catalyst Fuel Trim System Too […]
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Dorman Products
      Why you should check every customer’s coolant with a test strip
    • By Counterman
      One of the more difficult things about any technology is all the new terms you seem to get hit with, and in the automotive world, CAN bus was one of those terms. The second half, “bus,” was a term we had already used for many years, primarily as “bus bar.” A bus bar was a metal strip or bar that distributed power among multiple components.
      In the automotive world, even when fiber-optic turn-signal indicators mounted on the front of a fender were as high-tech as it got, bus bars were inside many components such as fuse panels and relays, and sometimes under the hood for various engine electronics.
      Then computer electronics took over. At first, we just had one electronic control unit (ECU) to deal with, and it was for the engine. Before you knew it, there was a transmission control unit, then the ABS control unit (not necessarily in that order). Wiring harnesses got bigger … and bigger and bigger.
      Today, a car can have as many as 150 ECUs. In addition to the familiar engine, transmission, brake and airbag control units, doors, seats, mirrors, power steering, audio systems, cruise control, batteries and charging management systems all have their own control units. And as you can imagine, that’s just scratching the surface.
      As technology was taking a ride with all these systems, engineers realized there were too many wires and too many sensors. There was no choice but to get aboard the CAN bus. CAN stands for controller area network, and a CAN bus, simply put, is a common communication line that can be used by all ECUs on the network.
      The various control units on a modern vehicle need to communicate and share information over this network. Here’s an example of how and why. Years ago, when you turned on the air conditioning, a simple switch sent power to the compressor clutch. Today, the HVAC control module may need to communicate with the body control module (BCM) to notify it that A/C has been requested.
      The BCM in turn sends a request to the engine control module (ECM) to “ask permission” if it can energize the A/C-compressor relay. The ECM looks at current engine operating parameters and sends a response signal to the BCM, which, in turn, sends a signal to the A/C relay.
      The technological features on today’s cars are nothing short of impressive. Advanced driver-assistance systems (ADAS) include features such as adaptive cruise control, forward collision warnings, high-beam safety, lane-departure warnings, traffic-signal recognition, lane-keep assistance, automatic emergency braking and traction control.
      All of the associated control units are in constant communication with each other, and since many of them must utilize information from the same sensors, through the CAN bus network this is possible. Instead of an ambient-temperature sensor for the ECM, the HVAC control unit and the instrument cluster, one sensor can share its data over the network.
      Some high-end vehicles have a feature called automatic brake wiping, or brake disc wiping. This feature utilizes information from a rain sensor (also used by automatic windshield wipers) that’s sent over the CAN bus to the ABS control unit. In programmed intervals, the ABS control unit lightly applies the brakes in a manner that the driver won’t notice, to clear water and moisture away from the rotors and provide maximum braking when needed. All of this is only possible thanks to the communication available over the CAN bus.
      Developing the CAN bus system was no simple feat, and it took many years to complete. The requirements for automotive CAN bus communication are standardized as part of the OBD II vehicle communication standard. There have been many changes over the years related to CAN communication, primarily affecting the speed and manner in which data is transmitted. The easiest way to think about it is to relate it to the changes over the years in USB design we’re all familiar with. It’s for the same reason. They transmit data quicker.
      From a service standpoint, technicians have had to become familiar with CAN bus systems. U-codes that indicate a loss of communication between modules or on a specific bus are a tool designed to help technicians diagnose CAN bus problems.
      Electrical wiring diagrams reflect the CAN bus network, and there are three different types of networks – loop, star and loop/star hybrid – referred to as CAN bus topology. Being able to recognize the type of topology can help a technician diagnose CAN bus errors quicker. In today’s world, we all have to get aboard the CAN bus.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By celvampire
      I found what looks to be an unused O2 sensor found in a thrift store, there are no marking anywhere on the part. Can anyone tell just by looking at it, what car/truck it might fit? Thank you.




    • A-premium Auto Parts:5% OFF with Code GM5.
    • By Mighty Auto Parts
      The post
      link hidden, please login to view appeared first on link hidden, please login to view. Vehicles today incorporate a maze of electronic components that must be considered when troubleshooting a performance related symptom. A vast arsenal of test equipment is necessary to communicate with the electronic systems and components. Systems are so connected that it is difficult for the technician to distinguish between a mechanical, electrical, fuel or emission related […]
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

×
  • Create New...