Quantcast
Jump to content
  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn. 

     

Alligator TPMS Sensors Offer Coverage For 2020-2021 Ford Bronco


Recommended Posts

Alligator sens.it RS universal TPMS sensors now cover the 2020-2021 Ford Bronco.

“This vehicle has hit the market by storm and Alligator is proud to offer service for this impressive new SUV,” Alligator said in a news release.

The all-terrain Bronco is another addition to the expanding list of Ford vehicles that can automatically learn and detect TPMS sensors once installed into each wheel assembly, or if rotating tires at regular intervals.

Alligator offers these instructions: Simply install the new Alligator sens.it RS universal TPMS sensors, then begin driving the SUV, and the system will register the new IDs automatically while driving. Based on the instruction manual, make sure to park the vehicle the required amount of time for the TPMS system to enter into relearn mode (usually 20 minutes).

The Alligator sens.it RS universal TPMS sensor also supports location detection, so when rotating tires, there’s no need to reset the system manually. Simply follow the same procedure as auto-learning and the display will show the new tire locations on the dash after driving for a few minutes.

“By continuing to use Alligator sens.it RS universal TPMS sensors, shops can ensure they are working with a part that supports the full range of OE features, which helps make the job easier, reduces unnecessary downtime in the bay for TPMS learning or general sensor issues, helps the bottom line and, most importantly, keeps customers happy and coming back,” the company said. “When replacing OEM sensors with aftermarket sensors, rest assured that RS Series TPMS sensors from Alligator will provide all the functionality your car delivers. Regardless of the tool you use to program your Alligator TPMS sensors, this new application should be available for programming after you complete the latest update.”

Alligator is a brand of

link hidden, please login to view
.

The post

link hidden, please login to view
appeared first on
link hidden, please login to view
.

link hidden, please login to view

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Topics

    • By Counterman
      First Brands Group has added 82 new part numbers to its Raybestos braking portfolio of friction, rotors and hydraulics that cover more than 25 million vehicles in operation (VIO).  
      New brake-pad coverage now is available for late-model domestic- and foreign-nameplate passenger and transport vehicles, including the Ford Bronco, Escape, Maverick and Transit 150-350; Hyundai Palisade and Santa Fe; Kia Telluride; Lincoln Corsair; and Nissan Kicks and Versa.
      “As we celebrate the 120th anniversary of Raybestos this year, we remain steadfast to our commitment to adding new coverage to our product lines to support our installer customers and help them grow their brake businesses,” said Lou Kafantaris, director of marketing, braking, First Brands Group. “Our Raybestos product-engineering team works tirelessly to ensure that each product that they design matches OE form, fit and function. Products are extensively tested at our newly expanded R&D facility in McHenry, Illinois, to ensure we continuously strive to provide the highest quality brake products in the industry.”
      The complete family of Raybestos brake products include disc pads and shoes, drums and rotors, master cylinders, wheel cylinders, calipers, hoses and hardware. To learn more about new part numbers and their applications, customers should contact their First Brands Group representative.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Continental has expanded its line of hybrid-battery cooling fans to provide coverage for some of the most popular hybrid models on the road today.
      The growing line now delivers direct-replacement fans for Ford, GM, Honda, Hyundai, KIA and Toyota hybrid models from 2003 to 2021.
      “As the average age of hybrid vehicles on the road continues to climb, it is very important that the ‘air-cooled’ technology used to keep the battery and battery cells properly cooled continues to operate to OE specifications,” said Christina Bergstrom, Continental senior product manager. “That is why we have continued to expand our hybrid-battery cooling fan coverage to popular model years of the Buick LaCrosse, Chevrolet Impala and Volt, Ford C-Max and Fusion, Honda Civic, Hyundai Sonata, Kia Optima, Toyota Camry and Prius, and more. The battery packs on these vehicles can begin to weaken after only five years of service and the cooling fans may need to be replaced in the seventh and eighth year in order to maintain required cooling performance.”
      Designed as an exact replacement for the original fan, Continental hybrid-battery cooling fans restore the original battery cooling performance to the vehicle. Ensuring that the fan is properly functioning is critical to maintaining the health of the battery and the vehicle’s overall fuel economy. The fans feature an OE design, including identical mounting locations and plug-and-play electrical connections, that helps ensure an easy installation.
      For more information, visit
      link hidden, please login to view or contact [email protected] The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      At the same time the auto industry was dipping its toes into technology, I was your typical high school adolescent who only cared about the cars I could afford – which at that time was nothing newer than mid-‘70s iron.
      The only language I knew was that of carburetors, camshafts, headers and hot rods, and growing up in a college town, I thought lambda was a fraternity. In a few short years when I entered both the auto repair industry and technical college, I found out I had a lot to learn.
      All of a sudden, I had to learn technology, which required first off to learn the terminology. Oxygen (O2) sensors were new to me, and then throwing in the term “lambda” made it all seem complicated. I eventually learned that it really wasn’t, but I also learned not to get wrapped up in all the overly technical jargon.
      From a technician standpoint, I needed to understand how things worked – not re-engineer them – so here’s what I taught myself to know about O2 sensors, and I promise I won’t use the word “lambda” … at least for a while.
      O2 sensors have a simple function. They generate voltage, and their job in an automotive context is to provide a varying output voltage in response to the amount of oxygen in the exhaust. Determining the amount of oxygen in the exhaust is what allows modern engine-management systems to calculate the efficiency of the combustion process and adjust the fuel delivery to maintain the correct air/fuel ratio.
      So, how do they do this? The principal is an electrochemical reaction that takes place, the catalyst for which is the difference between the amount of oxygen in the air we breathe compared to the amount of oxygen in the exhaust. In order to get the “outside” sample of air, some O2 sensors have provisions that allow air into the body of the sensor; others have a sealed sample inside.
      One of the important factors in the operation of an O2 sensor is heat. The bottom line is they can’t produce an accurate signal until they’re warmed up. Until an O2 sensor is warmed up, the computer will run the engine in a mode called open loop. All this means is that it’s running on pre-programmed parameters, but it also means it’s not running efficiently since it’s not yet utilizing the critical data from the O2 sensor that it needs to adjust the air/fuel ratio.
      When the O2 sensor warms up, the engine computer will switch to closed-loop operation, meaning it’s now adjusting the air/fuel ratio based on the input it receives from the sensor(s). Since this is so important for emissions, the quicker the O2 sensor warms up, the better. Location or placement in the exhaust has an effect on how quickly they warm up, but the two biggest factors are the addition of built-in heaters and higher idle rpm when the engine is cold.
      High rpm also is important to warm up the catalytic converter, since they don’t work efficiently until warm either. But enough of that. Let’s move on.
      AFR Sensors
      So, you have an idea of what an O2 sensor does and when it does it. It’s time to throw a wrench in the works. There’s another sensor called an air/fuel ratio (AFR) sensor. An AFR sensor also is called (or nicknamed) a wideband O2 sensor. What they ultimately do is the same thing, and up to this point in the article, feel free to switch the term O2 with AFR.
      They also look basically the same and mount the same. We often call them all O2 sensors, and nobody gets really hung up on it, because they’re close enough. AFR sensors, however, have different operating parameters because they have a wider range and are able to provide more precise information to the vehicle computer. They simply are a more accurate version of an O2 sensor.
      The fact that they operate differently is obviously critical for diagnostics, but it’s also just as important from the standpoint of replacement. The only acceptable replacement is a sensor that is specified for the exact vehicle in the exact location on the vehicle. An O2 sensor won’t work in place of an AFR sensor, or vice-versa. Some vehicles also have both types of sensors installed, making it more important to confirm which sensor is being replaced.
      Most modern vehicles have two sensors on each bank of the engine. An inline engine only has one bank (with the exception of a couple strange anomalies out there that you may run across), and any V-configured engine has two banks. When you sell an O2 or AFR sensor, you’ll need to know the location referenced as Bank 1 Sensor 1, Bank 1 Sensor 2, Bank 2 Sensor 1 and so on.
      Real-World Operation
      Let’s touch briefly on operation. Ideally, we would like to make an engine run at the perfect air/fuel ratio (referred to as stoichiometric ratio) at all times. In the real world, that’s not possible due to constantly changing parameters of engine operation, so the best we can do is allow the engine computer to make constant adjustments.
      An O2 sensor (not an AFR sensor) is only able to send basic voltage signals of rich or lean. When it sends either signal, the control unit reacts and adjusts the fuel mixture. So, for example, if it sees a rich signal, it will continue to lean out the mixture until it sees a lean signal. As soon as it sees a lean signal, it then will begin to enrich the mixture until it sees a rich signal. This all happens really fast of course, and on an oscilloscope, normal O2 operation will look like a consistent waveform ranging from about .2 volts (a lean signal) to approximately .8 volts (a rich signal). As long as the average between the high and low readings is about .45 volts (450 millivolts), we know that the sensor is operating correctly, and the control unit is able to maintain the proper fuel mixture.
      An AFR sensor operates in conjunction with the control unit through current flow. The current flow changes direction for rich or lean, and when the mixture is at the stoichiometric ratio, current flow stops. The AFR sensor also increases or decreases the current flow (in either direction) in direct proportion to the changing rich or lean condition. This provides much more information to the control unit, allowing it to better predict and control fuel mixture.
      On an oscilloscope, normal operation is similar to that of an O2 sensor, but the voltage can vary in a range from 0 up to 5 volts. Lower voltage indicates a rich signal, whereas higher voltage indicates a
      lean signal.
      I may have bridged the gap of too much technical information, but it’s all more knowledge you can share with your customer and use to your advantage when explaining the importance of a quality sensor. Undoubtedly, you’re also going to be asked two things. One, how to tell if a sensor is bad; and two, tips about replacement.
      Diagnosis
      Diagnosing a sensor can be difficult when it comes down to the level of using an oscilloscope, primarily because it takes a lot of experience to get familiar with reading the waveforms. So, here’s a good way to approach it when your customer asks.
      Generally speaking, a customer buying an O2 sensor is almost always trying to “fix” the “Check Engine” light because of an O2-sensor code. If the stored code is related to the sensor heater, diagnosis should be easy. The control unit provides power and ground to the heater, and wiring problems are very common. Check for power and ground at the sensor connector wires. If you have it, the sensor heater is bad and the sensor needs replaced. If you don’t have it, there’s a wiring issue.
      If the code is related to sensor operation, it could be a bad sensor, bad wiring or another problem such as a vacuum leak or leaking injector. You have to be careful about misdiagnosis, so it’s fair to recommend your customer have the problem professionally diagnosed. However, it’s a fact that O2 and AFR sensors will wear out with age.
      Since we know it’s a chemical reaction that takes place to make them work, think of it like a traditional car battery. A chemical reaction takes place to generate electricity in a battery, and over time the ability for that chemical reaction to take place diminishes. The same is true with an O2 or AFR sensor. They simply wear out. Don’t be afraid to recommend them based on age.
      O2 and AFR sensors also are very sensitive electronic devices, and they can be damaged by coolant, engine oil, incorrect fuel or silicone and sealants that are not safe for use with them, so beware of these other outside possibilities that can
      ruin them.
      Installation Tips
      When asked about installation, here are some tips. All sensors, O2 or AFR, are 22 millimeters. There are many different O2-sensor sockets, which are designed to allow you to remove the sensor without damaging the wiring harness. This is really only important if you are removing a sensor for access to another repair.
      If the sensor is bad, there’s no need to worry about the wires. Cut them off at the sensor and use a 22-millimeter wrench or socket. The most common thing that happens during replacement is that you break the sensor loose, get about a quarter-turn on it and it locks up. You have to be patient at this point and allow penetrating oil time to work its way in, then slowly work the sensor back and forth until you can remove it.
      Thread damage is common, but almost always repairable using a thread chaser or tap. Most new sensors come with a little anti-seize on the threads, but if not, use a high-temp anti-seize for installation.
      The ‘L’ Word
      I know I promised I wouldn’t use the “L” word, but just for the record, lambda is a numerical representation of stoichiometric ratio, which itself is a reference to air/fuel ratio. Most of us know 14.7:1 – the stoichiometric ratio for gasoline, which is necessary for complete combustion, or for all fuel to burn with no excess air left over. What’s tricky is that the stoichiometric ratio is different for alternative fuels.
      In other words, all fuels don’t require the 14.7:1 ratio for correct combustion. E85, for example, has a stoichiometric ratio of 9.77:1 for correct combustion. The lambda value for the ideal stoichiometric ratio, regardless of fuel type, is 1.00. Basically, it’s just a different scale, like using the metric system vs. fractional. Utilizing the lambda value has become more popular in recent years, primarily due to the interest in aftermarket vehicle tuning. Many tuners utilize lambda simply for consistency, but you have to be careful. Some control units use lambda numbers, some use stoichiometric, so when you’re at that level, you just need to know what you’re dealing with.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By OReilly Auto Parts
      How To: Change the Oil and Filter On a 2004 to 2011 Ford Focus

    • DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.

    • By Counterman
      The first of the Ford “modular” engines was a 4.6-liter V-8 that appeared in the 1991 Lincoln Town Car. The family soon grew into six unique displacements, including a V-10. Three decades later, the modular family is still around, most popularly in the current 5-liter “Coyote” trim.
      Let’s look back at some of these original engines, the vehicles they powered and a few of the reasons we still hear about this engine family on a regular basis.
      But first, a disclaimer: The “modular” name doesn’t refer to parts interchangeability, although some of these engine designs share common features. In this case, “modular” refers to the manufacturing processes used at the Romeo, Windsor and Essex engine plants to produce these engines quickly for a wide range of platforms. Each of these engines has distinct design features, and some need to be catalogued carefully – utilizing VIN, application and model-year information to properly identify components.
      The original 4.6-liter was a two-valve SOHC V-8 engine found in the Town Car, Crown Victoria and Grand Marquis. The 4.6-liter was designed as a replacement for the old pushrod 5-liter and 5.8-liter (aka the “302” and “351”), a trend that continued as the pushrod engine slowly disappeared from the Thunderbird, Mustang and F-Series trucks throughout the mid to late 1990s. These early engines were built in Romeo, Michigan, and Windsor, Ontario, and the two have distinctly different timing drives and cylinder-head designs.
      Identifying Romeo-built and Windsor-built 4.6-liter engines can be as simple as decoding a VIN – providing the engine is still in its original vehicle. Unfortunately, Ford chose to identify the Romeo engines with a “W” in the 8th VIN position, while the Windsor engine was assigned the number “6”!
      Looking at the engines themselves also gives a few clear clues, in case you’re dealing with an engine “in the wild,” or a possible transplant. The valve covers on the Romeo engine are held down with 11 bolts, while Windsors feature 13/14 bolt patterns. Beneath the timing covers, you’ll also find that Romeo cam gears are bolted to the camshaft, and Windsor cam gears are pressed onto their shafts. Even bare blocks can be identified easily by locating the “R” or “W” casting marks on each engine – and this time “W” actually means WINDSOR!
      F-Series trucks received a new modular option in 1997 in the form of the 5.4-liter, another two-valve SOHC V-8. The same year, E-Series vans were the first to receive the new modular 6.8-liter V-10. These engines were manufactured in the two Canadian plants, so there are no Romeo versions. These modular truck engines became known as the “Triton” series, which became a point of confusion a few years later when Ford introduced a THREE-valve cylinder-head design to the family.
      Triton would seem to indicate “three” of something, just like tricycles have three wheels or triangles have three sides, but the name pre-dates the first of the three-valve designs introduced in 2004. Triton truck engines can be found in both two- and three-valve versions, and the last 4.6-liter modular engine (produced in 2014) actually was a two-valve Triton engine.
      In addition to the trucks, three-valve engines were found in Mustangs and SUVs, but the modular family also included a series of four-valve DOHC engines in both 4.6-liter and 5.4-liter displacements. These were fit primarily in SVT, Shelby and other performance-oriented vehicles, but the Lincoln lineup also received the four-valve DOHC treatment periodically throughout the modular years. The current 5-liter Coyote continues this 4V DOHC tradition, along with its derivative 5.2-liter Voodoo/Predator, and 5.8-liter Trinity cousins.
      The 4.6-, 5.4- and 6.8-liter engines were plagued with spark plug issues in both the two-valve and three-valve versions. 1997-2008 modular two-valve engines with aluminum cylinder heads were prone to stripping spark plug threads, often ejecting the spark plug forcefully from its cylinder port.
      The three-valve design did not have thread-stripping issues, but the unique two-piece spark plug that Ford used in the three-valve engines from 2004-2007 has a tendency to snap in half during removal, leaving a difficult-to-remove stump of electrode shell at the bottom of the spark plug well. Several tool companies have developed plug-removal kits for the 3V vehicles, and thread-repair kits for the 2V applications. Ford redesigned the 3V heads (and spark plugs) for 2008, and has since upgraded the plugs specified for the 2004-2007 engines. Aftermarket companies also have developed one-piece replacement spark plugs for these applications, which decreases the chances of that tune-up going horribly wrong!
      Even though these modular engines have been around for a long time, the applications in which they originally were installed lend themselves to longevity. They still are present in fleets, from taxis and police cars to cargo vans and work trucks. Of course, modular Mustangs of all varieties continue to be enthusiast favorites, from daily driving to competition at drag strips, autocross and circle-track events. The secondary market for the Crown Victoria also includes motorsports, as they have become the preferred demolition-derby car in most full-size classes, and there are even racing series exclusively for P71 (police-package) Vics!
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
×
  • Create New...