Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, X, and LinkedIn. 

     

Understanding Antilock Braking Systems


Recommended Posts

Who remembers having your driving instructor tell you to  “pump the brakes” when stopping on slippery roads? If you raised your hand, congratulations – you’re over the hill like me!

The purpose of pumping the brakes was to humanly perform what an ABS does. You apply the brakes just to the point where the tires begin to slip on the road surface, then release and reapply pressure as quickly as possible. You simply do this over and over again, all in a split second. And if it’s an emergency, you calmly steer around the danger as adrenaline rushes through your veins and your heart rate skyrockets. No problem, right?

Well, I think you can see the problem. And, what if one tire is on ice and the other isn’t? There goes the steering, and there’s no fancy footwork that can overcome that.

So, what was the solution? Antilock braking systems (ABS). When they were first developed, the intention was that a driver could maintain directional control of a vehicle under extreme braking (when a wheel locks up, steering control is lost). The fact that ABS stops a vehicle quicker in a straight line (though not an unexpected result) was just a bonus.

ABS Operation

ABS initially was a dedicated braking system, but the signals from the wheel-speed sensors (WSS) quickly proved useful for traction- and stability-control systems, and on some vehicles the signals also are utilized by the powertrain control module for other functions. It can seem complicated, but for the practicality of parts and service, we can leave that end of it to the engineers who design the systems.

Functionally, ABS is one of the easier systems to understand, and we can break it down into three main areas: the WSS, the ABS control module and the ABS modulator.

Each WSS generates a signal proportionate to wheel speed and sends that signal to the ABS control module. The WSS works in conjunction with a reluctor wheel, which is a toothed wheel that is fixed on a component rotating at wheel speed. This allows the WSS to generate a signal through electromagnetic or Hall-effect principles.

The ABS control module is the computer that monitors the WSS signals, decides what to do and when, and sends output commands to the ABS modulator.

The ABS modulator is the hydraulic unit of the ABS system that contains the ABS pump and valving. The regular state of the valves allows hydraulic pressure from the brake master cylinder to pass through for normal braking. If, during braking, the ABS control module receives a signal from one or more WSS that indicates a wheel is losing traction (locking up), it sends a signal to the ABS modulator, and the valve for that given wheel closes to prevent additional hydraulic pressure from being applied.

If the wheel continues to lose traction, the valve then will release the pressure on that given wheel. The pressure is released to prevent wheel lock-up, but the pressure must be reapplied immediately for proper braking and steering control. This is when the ABS pump turns on to create the necessary hydraulic pressure for this to happen. Not too bad so far, right?

ABS Repair and Diagnosis

When it comes to repair, the vast majority of the time, real-world ABS problems are caused by nothing more than the fact that one or more of the wheel-speed signals received by the ABS control module is incorrect. Depending on the nature of the errant signal, the ABS control module responds by either actuating ABS function when it is not required, or by storing a diagnostic trouble code (DTC) and turning on the ABS warning light.

Taking it one step further, the vast majority of errant wheel-speed signals are caused by either wiring issues such as a broken wire or resistance in a connector; a WSS that is not positioned properly to pick up the signal from the reluctor wheel; or, in some cases, a missing or damaged reluctor wheel. A WSS can go bad, of course, but it’s less common than a related mechanical or electrical issue that affects the ability of the sensor to get its signal to the ABS control module.

If you’re playing the role of technician and a customer is asking you to help with their self-diagnosis of an ABS issue, they’re not going to get anywhere without a scan tool. Luckily, there are some basic scan tools that have just the right functions. In the case of ABS, if you can view DTCs and wheel-speed data, you’re most likely going to have all you need. If there’s a DTC stored, this provides the initial information to begin diagnosis. For example, a DTC may be “RF wheel-speed sensor implausible signal.”

Wheel-speed data allows you to see the reported speed from each sensor. If everything is working correctly, you can watch the speed of each wheel as you slow down, and all four should read the same: 10, 9, 8, 7 … all the way down to zero, almost.

There’s a catch. For a long time, most wheel-speed sensors were considered “passive” sensors, which generated their own electrical signal when the vehicle was in motion. These sensors aren’t able to generate and send a signal below 3 or 4 mph, so seeing the reading drop off at low speeds is normal. But, when compared to the others, if one drops off earlier, then you have identified a problem area, and just need to determine why.

Whereas passive sensors generate their own signal, active sensors receive a reference voltage and work like a Hall-effect sensor, so they’re able to provide a wheel-speed reading all the way down to zero. This ability improves ABS performance at low speeds and has made them more common. Either way, wheel-speed data is the primary diagnostic focus for ABS systems.

Selling ABS Components

Scan Tools

If you stock basic scan tools and you offer one with ABS functions, borrow one and try it out. It’s fun to see the ABS data and see first-hand how you can relate it to ABS operation. Plus, when you’re talking to a customer, it gives you the upper hand in knowledge to sell them on one. It’s a good investment, because if they’re keeping and maintaining an older vehicle and there’s one problem now, there will be another down the road.

Electrical Repairs

Wiring problems are incredibly common, and it’s usually right down near the wheel. The ABS harness might have worn from age, but this isn’t too common. More often, something off the road has damaged it, or it wasn’t properly installed and rubbed against a wheel or other suspension component. The best practice is to always advise your customer to replace the sensor with a new harness (most sensors have an integrated harness that connects to the main harness just inside the wheel well). The reason is that any repair eventually will have an effect on circuit resistance, and like any computer-related circuit, even the slightest increase in resistance can cause a problem.

There always will be times when a customer will forego a sensor and opt for a repair, but this still is an opportunity to sell them the tools and supplies they might need – such as wire strippers/crimpers; extra wire; butt connectors; solder; a soldering gun; heat-shrink tubing; and electrical tape.

Using butt connectors to repair the harness is temporary at best. Although butt connectors are acceptable for some electrical repairs, in this case it introduces a rigid area into a harness that needs to flex due to suspension and steering movements. Each end of this rigid section is now more susceptible to breaking. The ideal repair – although still never considered “permanent” – is to solder a very small, short (approximately 1 mm) section of the wires, then seal the repair with heat-shrink tubing. The more precise you can be, the less rigidity you will introduce into the harness, and the longer it will last.

Wheel Bearings

Generally speaking, wheel bearings have nothing to do with ABS, but in some cases, the reluctor wheel is part of the wheel bearing. Some vehicles have press-in style wheel bearings that appear identical on both sides, but one side has a reluctor and one doesn’t. Pressing this style of wheel bearing in wrong is a common mistake, and with no reluctor wheel by the WSS, there is no way of generating a WSS signal.

Even on an older vehicle, when someone is replacing a wheel bearing, be sure to ask if it has ABS. It may or may not be relevant depending on the vehicle, but better to ask and avoid the potential for a problem. Along the same lines, if you sell a bearing that appears as if it could install either way and the vehicle has ABS, make sure to determine if it is indeed a bearing with an internal reluctor wheel.

On wheel-bearing/hub assemblies that are more common today than the press-in style, most of the time the ABS sensor comes with the assembly. Often the customer doesn’t notice the worn, loose wheel bearing until it affects the ABS sensor, and they may think the ABS sensor itself is the problem. If the ABS sensor is available separately, be sure and caution them that a bad wheel bearing may have caused the problem in the first place, and they should check it if they’re not sure.

CV Shafts

The same holds true here. Generally, a CV shaft has nothing to do with ABS, except that many of them have the reluctor ring on the outboard CV joint. Always ask if a car has ABS when ordering a CV shaft, just to make sure you get the right component. Since CV shafts often fit more than one application from the same manufacturer, it’s common for them to all be made with reluctor wheels simply to avoid the problem in the first place. If the car doesn’t have ABS or if the reluctor is in the wheel bearing, the reluctor on the CV joint does no harm or it can be removed.

Flush Brake Fluid

Brake-fluid flushes often are ignored, and while problems with ABS modulators are uncommon, when they do arise, it’s frequently because the brake fluid wasn’t flushed. It’s always a good service to recommend.

Tires

Why tires? If someone has installed the wrong-size tire in one location, guess what immediately changes? Wheel speed. I think you know
the rest.

Sensors

ABS sensors generally are easy to sell because we look them up by application and there are no other factors involved. You can take advantage of additional sales and save your customer time when sensors have to be removed during the course of another repair. Many sensors fit into a hole, and after a few years of driving, they might as well be welded in place. ABS sensors frequently need to be replaced simply because they’ve been destroyed during removal.

All in all, ABS isn’t too complicated, so you can be comfortable helping your customers understand how it works. Getting them all the right parts and giving them good advice is what brings them back.

The post

link hidden, please login to view
appeared first on
link hidden, please login to view
.

link hidden, please login to view

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Counterman
      The fuel system, as a whole, is responsible for delivering fuel from the tank to the engine, then metering it into the combustion chamber. It consists of the tank, the lines, the pump and the metering device. If only it was as simple as it sounds. The challenge lies in the continual changes over the last century, and how the frequency of changes has increased over recent decades.
      The heart and identity of any fuel system is the metering device or system that controls the flow of fuel into an engine. As a counter professional, you’re going to hear it all, and you’ll have to answer it all, so here’s a rundown on the major changes and differences over the years.
      Carburetion Systems
      A carburetor is a basic mechanical device, and the primary metering device used on the earliest automobiles. Carburetors held their ground until the late 1980s, when the last examples were eventually replaced by fuel injection. The job of a carburetor is to not only meter the fuel but also to properly mix it with the air flowing into the engine through the process of atomization.
      As the automotive industry began to migrate to fuel injection, a knee-jerk reaction opposing fuel injection ensued. We were familiar with carburetors, and liked the fact that they were mechanical devices that could be repaired and rebuilt using basic hand tools, and there were no electronics involved. Regardless of who made the carburetor or what style it was, an experienced technician could diagnose and repair a problem without the need for service information, scan tools or electronics.
      Though considered “simple,” carburetors are more complicated than they seem, with multiple different circuits to manage all aspects of engine operation. “Tuning” a carburetor – the art of balancing performance, efficiency and drivability – takes a considerable knowledge of engine operating principles, and the patience and precision to get it right.
      The majority of carbureted vehicles utilize mechanical fuel pumps, driven off the engine. This too adds to the attraction of these vehicles, as again there were no electronics involved. The drawback to carburetors came in their lack of ability for precise fuel control. They simply couldn’t keep up with the tightening noose of emission and fuel-economy standards that was in full force by the 1970s. As the end of their use in production automobiles came near, some electronics were incorporated into them, but ultimately proved ineffective.
      Today, any professional will admit – regardless of complexity – that fuel injection is simply superior and necessary. However, carburetion is still popular on old vehicles, partly because of its relative simplicity, but also due to the popularity of restoring old cars to their original state. While far from commonplace, carburetor rebuild kits aren’t going away anytime soon.
      Fuel-Injection Systems
      The advantage of fuel injection is the ability to precisely control fuel delivery under all operating conditions. Not only is this a necessity for emissions and fuel economy, but it also has a major advantage in drivability – an operational attribute that goes hand in hand with efficiency and performance.
      Attempts at fuel injection are as old as the internal combustion engine itself, but in the early days, too many bugs made it undependable. By the 1950s, substantial engineering efforts were applied to develop fuel injection, both in the United States and Europe. One of the more well-known systems was the original Rochester fuel injection developed by Chevrolet for the 1957 Chevrolet and Corvette.
      The idea behind developing this fuel injection wasn’t in the interest of horsepower or emission control. It was drivability, with the goal to eliminate the undesirable and unavoidable attributes of a carburetor, including fuel slosh in the fuel bowl and the transition between primary and secondary circuits. As you may expect, racers played a substantial part in all this, and the best part is they were very successful, and it unlocked horsepower as well!
      The Rochester fuel-injection system was available from 1957 through 1965, but it ultimately failed for only one reason: cost. It was an expensive option, and with the muscle-car wars in full force and much higher-horsepower carbureted engines available for a fraction of the cost, nobody was buying.
      By the late 1970s, fuel injection was better-developed, and this time emissions and fuel economy played a strong part. It began its rise to the top, and thanks to the advancements in electronic and computer technology, it got there quick. By the early 1990s, carburetion was all but gone from production automobiles.
      Fuel-injection systems can be separated into multiple categories and types, and since you’ll hear multiple terms, here’s how to tell them apart.
      Mechanical Fuel Injection
      Early gasoline fuel-injection systems were mechanical. The pumps were mechanical, and fuel was delivered directly to nozzles located in the intake manifold. The pressure of the fuel caused the fuel injectors to open. A type of air meter was necessary, but early systems relied primarily on vacuum signals or mechanical linkage between the air meter and fuel-distribution meter to determine the proper amount of fuel. Very minimal if any electronics were involved in these systems.
      Early diesel fuel-injection systems were purely mechanical as well, but the difference was the required fuel pressure. It doesn’t require much pressure to inject fuel into an intake manifold, but it requires extremely high pressure to inject fuel directly into a cylinder (such as is necessary for a diesel). Diesel-injection pumps housed a mechanical high-pressure pump to feed the fuel to the injectors.
      One of the most common gasoline fuel-injection systems to become popular beginning in the late 1970s was the Bosch Continuous Injection System (CIS). This, too, was overall a mechanical system, but an electric pump supplied the fuel, and minor electronics played a part in cold-start functions as well as fuel-mixture control.
      Electronic Fuel Injection
      Electronic fuel injection was a terminology that became well-known in the 1980s and was often indicated by the letters “EFI” on the back of a car. It seemed revolutionary at the time, and it indicated that the systems were now completely electronically controlled. It was this point in time when fuel pumps found their way into the gas tank; injectors were basically solenoids that opened the injector upon command from a computer; and the computer – along with a myriad of sensors – controlled everything surrounding the operation of the system.
      Even though EFI was an early term that would now be as redundant as saying you have antilock brakes on a new car, it’s technically still an accurate term. It’s just not used often because it’s assumed – and correctly – that everything on a new car is tied to electronics. EFI is a term that can include many different types of fuel injection.
      Throttle-Body Injection
      Throttle-body injection (TBI) refers to the fuel injector(s) being located in a throttle body that looks almost like a carburetor at a glance. This was done by design, as it was the most efficient and quickest way for auto manufacturers to make the change to fuel injection, while utilizing many of the same components they already had such as the same intake manifolds and air cleaners. TBI was most common in the 1980s and early 1990s.
      We’ve always loved fancy names. Have you ever heard of cross-fire injection? It was two throttle bodies at opposite corners of the intake manifold.
      Port Fuel Injection
      TBI was at a disadvantage because airflow was interrupted by the injector, and port injection was the next advancement in line. Port, or multi-point injection injects fuel into the intake runner just before the intake valve for each cylinder. The advantage is the ability to precisely control the fuel delivery and balance the airflow into each cylinder, leading to increased power output and improved fuel economy.
      Early mechanical fuel-injection systems were port-injection systems, sans electronic control. Seem confusing? Many fuel-injection terms cross over from new to old technology. There are just so many manufacturer-specific names that it can be confusing! Like EFI, port injection was widely advertised as the latest greatest advancement, with tuned port injection topping the performance charts. Port injection still is the most common type of fuel injection used today, but when was the last time you saw it called out? Nobody really says it anymore because it’s not new. But there’s another technology that we’re not done talking about, and that’s direct injection.
      Direct Injection
      Direct means the fuel is injected directly into the combustion chamber. Direct injection has been around for years in the diesel world, but it’s still relatively new for gasoline engines. The challenge with this type of injection is injecting the fuel into the high compression of the combustion chamber. Just like a diesel, it requires extremely high fuel pressure, and gasoline direct injection utilizes a typical electric pump to supply fuel to the rail, plus a mechanically driven high-pressure fuel pump to supply the necessary pressure for injection.
      The primary advantage of direct injection is that there’s less time for the air/fuel mixture to heat up since the fuel isn’t injected in the cylinder until immediately before combustion. This reduces the chance of detonation, or the fuel igniting from the heat and pressure in the cylinder. This allows a direct-injected engine to have higher compression, which itself lends to higher performance.
      There are additional advantages of reduced emissions and better fuel economy, but there also are some now-familiar drawbacks, including carbon buildup on the backs of the intake valves, low speed pre-ignition and limited high-rpm performance. For this reason, many manufacturers are combining both direct- and port-injection systems.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Customers are the core of our business, and communicating with them effectively is critical to our success.
      While each customer (and transaction) presents a unique set of opportunities and challenges, individual customers often can be classified into one of several broad types. Obviously, “profiling” or “stereotyping” an individual customer when you first meet them shortchanges everyone involved, but understanding the kinds of customers that make up your clientele gives us an idea of how to deal with each customer type once we actually get to know them.
      Depending on which marketing firm or consulting group you choose to believe, there are between four and 10 basic customer types. No matter how many categories you prefer to use, it’s the psychology behind these differences that holds the key to connecting with as many of them as possible. You only get one chance to make a first impression, so a “new” customer is the one with the greatest potential. Even if a new customer has familiarity with your business, they may not have experienced it directly. Your advertising, reputation or a personal referral (presumably all positive) have encouraged them to visit your location for their needs. Now is the time to show them what they’ve been missing!
      Consultative selling is a technique that focuses on building a relationship and determining what your products can do for your customer. By concentrating on the customer’s needs, you can further qualify them as one of the many customer types, and then offer the most appropriate solution for their individual situation. The immediate need might be for a battery or brake pads, but discovering the reason behind the intended purchase can open up the conversation in ways that make it easier for you to sell the most appropriate product for your customer. It also can minimize disappointment and build trust, by ensuring that the products and services are truly useful and meet the customer’s expectations.
      Once the new customer becomes an “active” customer, you haven’t entirely sealed the deal. There’s a huge difference between gaining a customer and keeping a customer. An active customer isn’t necessarily a loyal customer, so using what you’ve already learned about their needs makes it a little easier to meet those needs each time. Neglecting or disappointing your new and active customers leaves the door open for them to become someone else’s new and active customers. Building upon each successful transaction (and learning from any less-than-successful ones) helps you turn these types of customers into the most desirable customer type: the loyal customer.
      Loyal customers are at the heart of the 80/20 rule, which states that 80% of your business comes from roughly 20% of your customer base. New and active customers may come and go (sometimes through no fault of your own), but that solid core of loyal customers is what really keeps your lights turned on and your employees paid every week. As 80% of your business, these are the customers you really need to know and understand. Delivering best-in-class service and focusing on being an integral part of their success will help ensure that these customers remain loyal and even advocate for your business!
      With proper care and feeding, we can reap the benefits of that natural progression from “new” to “active” to “loyal,” but along the way we may discover that we have some lapsed or unhappy customers. Timing is critical when addressing these “at-risk” customer types. An unhappy customer (even a loyal one) is likely to become a lapsed customer if we continue to fail them, especially if our competition surpasses us in service, pricing or any other metric. We need to identify and correct the core issues behind their dissatisfaction before that customer has the chance to cozy up to another vendor.
      The at-risk customer tends to taper off slowly, so if you aren’t paying attention, you may not even realize it until it’s too late! If a valued customer does become lapsed, you should still attempt to salvage that relationship by determining what caused the lapse in the first place. The feedback also may prove to be useful in the future when dealing with other customers, who might have similar needs and objections.
      No matter if it’s a retail or a commercial account, knowing the most effective ways to connect with each customer type helps create repeat business and build your brand.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Dorman Products
      Active Suspension Systems | Counterperson Training from Dorman Training Center
    • By Counterman
      Fuel injection is as old as the internal combustion engine itself. However, many of the early systems proved to be somewhat troublesome and quirky. The carburetor, by comparison, was simple and dependable, and therefore the fuel system of choice for the majority of mass-produced vehicles through most of the 20th century.
      For those who entered the automotive industry during the reign of the carburetor, fuel injection was so uncommon that as it began to make a comeback during the 1980s, it was largely misunderstood and tagged with the less-than-endearing term of “fuel infection.”
      With the help of electronics and computer control, fuel-injection systems began to improve quickly and followed a course of evolution that introduced many different system designs. Suddenly, we were bombarded with unusual terms and acronyms like Jetronic, Motronic, TBI, MFI, GDI, TDI and many more. While it might have seemed confusing at first with so many different coined terms from so many different manufacturers, ultimately there are only two basic types of fuel injection.
      Why Fuel Injection?
      For efficient combustion to occur, fuel must be atomized first (broken up into the smallest particles possible) so it can mix with the air and vaporize. Only then will it properly burn inside the cylinder.
      The job of a carburetor was simply to allow the air flowing through it to atomize the fuel as it draws it out of the various circuits. Carburetors work very well at doing this, but they also are inefficient in many ways, preventing them from remotely coming close to the efficiency required for the tightening emission regulations of the time.
      This is where fuel injection proved itself a superior method of fuel metering. Fuel injection atomizes the fuel as it exits the tip of the injector. But even more importantly, with the combined advance in electronics and computer controls, it also provides precise control of the amount of fuel – a critical aspect for fuel economy and emission control.
      Indirect Fuel Injection
      Indirect means the fuel is injected and atomized before it enters the combustion chamber. Throttle-body injection (TBI), sometimes referred to as single-point injection, is a type of indirect injection in which the injector is located in a throttle body before the intake manifold. The throttle body looks similar to a carburetor and uses many similar components such as the intake manifold and air cleaner.
      This was done by design, as it was the most efficient and quickest way for auto manufacturers to make the change to fuel injection, while utilizing many of the same components. Port, or multi-point, injection injects fuel into the intake runner just before the intake valve for each cylinder. Still a form of indirect injection because it occurs before it enters the combustion chamber, the advantage is the ability to precisely control the fuel delivery and balance the air flow into each cylinder, leading to increased power output and improved fuel economy.
      Whether an engine is carbureted or fuel-injected, atomization of the fuel is critical for combustion. Many variables affect atomization, and even though a fuel injector initiates the process, the airflow and other objects around it will affect how well the atomized fuel mixes with the air and vaporizes. The location of the injector as well as the design of surrounding components are critical aspects of engine design.
      TBI is at a disadvantage because the airflow is interrupted by the injector – another reason that port injection has the advantage and has made TBI obsolete on newer vehicles.
      Diesel engines are fuel-injected because diesel fuel doesn’t atomize and evaporate like gasoline. It must be injected into an air stream at high pressure to atomize, and the turbulence of the air is an important factor in causing the air and fuel to mix.
      Early on, due to the difficulties of creating an efficient direct-injection system, many diesel engines utilized a pre-combustion chamber that created the necessary turbulence for proper fuel atomization. The fuel was injected into this pre-combustion chamber, making these indirect fuel-injection systems as well.
      Direct Fuel Injection
      Direct means the fuel is injected directly into the combustion chamber. The challenge with this type of injection is the pressure inside the combustion chamber is much higher than that of the pressure in the intake manifold of an indirect-injection system.
      For the fuel to be pushed out of the injector and atomized, it must overcome the high pressure in the cylinder. Indirect systems have a single fuel pump in the tank that provides adequate pressure for the system to operate, usually 40 to 65 pounds per square inch (psi). Direct systems utilize a similar pump to supply fuel to the rail but require an extra mechanically driven high-pressure pump that allows them to overcome cylinder pressure. These systems usually operate at 2,000 psi or higher.
      Direct-injection systems can be identified easily by the location of the injectors going directly into the cylinder head as well as the additional lines and mechanical pump, usually visible above the valve cover.
      The primary advantage of direct injection is that there is less time for the air/fuel mixture to heat up since the fuel isn’t injected in the cylinder until immediately before combustion. This reduces the chance of detonation, or the fuel igniting from the heat and pressure in the cylinder. This allows a direct-injected engine to have higher compression, which itself lends to higher performance.
      Another advantage is reduced emissions and fuel consumption. With indirect injection, fuel can accumulate on the intake manifold or intake ports, whereas with direct injection, the entire amount of fuel sprayed from the injector is the exact amount that will be burned, ultimately leading to more accurate control over the combustion process.
      The overall performance and efficiency of direct injection can’t be matched. However, there are still some disadvantages to it when compared with indirect injection. One of the most well-publicized is carbon buildup on the back of the intake valves. Fuel is a great cleaner, and the fuel spray from a port-injected engine keeps the back of the valves clean. Without it, excessive carbon buildup occurs, leading to interrupted airflow into the engine, reduced performance and an expensive repair.
      While not an issue for typical everyday driving, indirect injection is limited at high engine rpm because there simply isn’t enough time for the injector to release the fuel and for it to properly atomize. Since port-injected engines spray fuel before or as the intake valve is opening and complete vaporization occurs and the air is pulled into the cylinder, there’s no rpm limit with indirect injection.
      Low-speed pre-ignition (LSPI) is a common term you may have heard, and it’s a problem that exposes another chink in the armor of direct injection. The piston and combustion-chamber design of a direct-injected engine is very specific to create the proper air turbulence to completely vaporize the fuel for combustion. At low rpm, the piston is not able to create the proper turbulence, leaving unvaporized fuel pockets that combine with contaminants from oil vapor and carbon buildup, leading to pre-ignition.
      While this problem specifically occurs on direct-injected engines, it can worsen with some engine oils depending on the additives they contain. This is why new oils are advertised to prevent LSPI.
      As engine technology advanced, diesel engines saw changes in piston and combustion-chamber design that allowed them to make the switch to direct injection and realize the same performance benefits.
      So, your two basic types of fuel injection are indirect and direct. There are advantages and disadvantages to both. What’s next? The simplest solution in the book: dual injection. Now manufacturers are building cars with both. Computer control utilizes both systems to eliminate the weaknesses and exploit the strong points of each type of system. It’s the best of both worlds. Wasn’t that easy?
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • A-premium Auto Parts:5% OFF with Code GM5.
    • By Counterman
      Once hated and touted as “power robbers,” we’ve learned over the years how emission-control systems not only protect our environment, but also how they contribute to the overall performance, economy and longevity of today’s engines as an integral part of the combustion process.
      Emission-control components are high on the list of parts you sell, because they affect vehicle operation, and if they’re not working properly, they result in the dreaded “Check Engine” light. There are many ways that the various emission systems on a vehicle tie together, but a look at the main players can help you develop a base understanding of how the overall system works.
      Positive Crankcase Ventilation
      Any internal-combustion engine produces blowby gasses, which are gasses from the combustion process that are forced past the piston rings into the crankcase. These gasses must be vented to prevent pressure buildup, which would cause oil to be forced past gaskets and seals. These gasses also combine with the oil vapors in the crankcase to form sludge and dilute the oil with unburned fuel.
      From the early days, we knew that blowby gasses had to go, so we got rid of them – right into the atmosphere. At least that’s what we did until the 1960s (hello smog).
      To reduce air pollution, auto manufacturers began to utilize positive-crankcase-ventilation (PCV) systems. PCV was a simple system to draw the vapors out of the crankcase using engine vacuum. The vapors and unburned fuel were then drawn back into the cylinders and burned, eliminating them as a source of air pollution.
      But there was another benefit to it. Normal system operation pulled fresh air through the crankcase, which removed moisture – extending oil life and reducing sludge. Since PCV is more or less a controlled vacuum leak, the flow rate is important, and even on older vehicles, the fuel systems are calibrated to work in conjunction with it.
      PCV systems still are utilized on modern engines, and engine-management systems are able to monitor their operation by checking the flow rate. The efficiency of modern PCV systems not only reduces emissions but also drastically extends oil life. PCV components range from the simple valves on an older vehicle to more complex integrated PCV orifices/oil separators found on or as part of the valve cover on many new engines.
      Other PCV-related components include crankcase-ventilation filters and breather hoses. Don’t forget that these components are designed and calibrated to each engine and fuel system, even on older vehicles. Just because it fits doesn’t mean it’s correct, and also beware of aftermarket “catch cans.” Many people think this is a performance upgrade that traps oil vapor and contaminants before they’re drawn into the intake. This is true on some older vehicles, but on most modern engines the PCV system is so refined that it cannot be improved upon. Installing a “catch can” on these engines will most likely only result in a drivability issue.
      Exhaust-Gas Recirculation
      Exhaust-gas recirculation (EGR) is an emission-control technique designed specifically to reduce the formation of nitrogen oxide (NOx), a very unhealthy and dangerous gas that’s formed during the high temperature and pressure of combustion. It works by recirculating exhaust gas back into the cylinders and cooling the combustion process.
      In reality, it doesn’t actually “cool” the combustion process, but by displacing oxygen, it prevents the air/fuel mixture from burning hot enough to form NOx. EGR can offer advantages to the combustion process, and modern engine-management systems are designed to maximize this, with the efficiency of gasoline engines often improved as a result. Not only is it illegal, but disabling any type of EGR control also will result in a loss of performance.
      On diesel engines, EGR is again an effective emission-control device, but becomes considerably more complicated. Since diesel fuel ignites with the heat of compression, higher temperatures promote efficiency … but unfortunately also the formation of NOx. To combat this, many modern diesel engines have EGR coolers that allow a larger mass of recirculated exhaust gas into the intake.
      But, this reduces the efficiency of the combustion process, which creates excessive soot. To combat this, a diesel-particulate filter (DPF) is installed in the exhaust to capture and store the soot, which must be burned off periodically to regenerate the filter.
      Since EGR systems are critical for emissions and performance, they’re closely monitored and controlled by the powertrain control module. Common EGR components include everything from the common EGR valve to pressure sensors, EGR tubes, EGR coolers, control solenoids and pressure sensors.
      Exhaust and Catalytic Converters
      Catalytic converters need no introduction. Since the 1970s, they’ve been the major emission component that chemically converts the harmful pollutants in the exhaust into harmless gasses. On todays’ vehicles, they work in conjunction with oxygen and/or air/fuel ratio sensors, also well-known emission-control components.
      Before the converters (pre-cat), the oxygen sensors report the air/fuel ratio to the engine control module so it can adjust the fuel mixture based on operating conditions and ensure that an improper mixture will not damage the converter itself. After the converter, a post-cat sensor again sends a signal to the engine control module, from which it determines the efficiency of the converter.
      The diesel side again can seem more complicated. They too have what appears as a catalytic converter, but on a diesel, they contain not only a catalyst but also the DPF. They’re sometimes referred to as aftertreatment devices, and overall design can differ between vehicle makes. The process that occurs is referred to as selective catalytic reduction (SCR), during which the catalyst works in conjunction with injected diesel-exhaust fluid (DEF) to convert NOx into nitrogen, carbon dioxide and water vapor.
      The DPF traps the soot, which is burned off through passive or active regeneration, and in some situations the process must be performed by a service technician. NOx sensors monitor the entire SCR process.
      In addition to catalytic converters, exhaust-related emission components include oxygen, air/fuel ratio and NOx sensors; DEF and DEF-related components; and diesel aftertreatment devices.
      Evaporative Emissions
      Evaporative emissions refer to anything that helps keep fuel vapors in the tank and out of the atmosphere. This requires very strict monitoring of the pressure in the tank, and when venting is required, filtering of the fumes. EVAP canisters – sometimes referred to as charcoal canisters – store fuel vapors to prevent them from reaching the atmosphere until they can be drawn in by the engine.
      The entire process of evaporative emissions requires multiple components, including the EVAP canister, hoses, lines, canister-purge solenoids, canister-purge valves, canister-vent solenoids and leak-detection pumps. The design of these systems often differs between manufacturer, so it can take some time to get used to all the different components.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

×
  • Create New...