Quantcast
Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn. 

     

A Closer Look At Engine Cooling Components


Recommended Posts

The cooling system no longer is focused on cooling as much as it is on managing and maintaining a consistent engine and transmission temperature. Since our industry always seems to find a way to inundate us with new acronyms and terminology with every model year, it could be only a matter of time before they start to call it a Powertrain Heat-Management System (PHMS).

Make no mistake: The name is not real – at least not yet. I just made it up. But it’s a very accurate representation of what a modern-day cooling system does. To understand the technology of today’s cooling system and why the name almost deserves a change, let’s first look at a brief history mixed with a touch of science.

The term “cooling system” originally came about on the early automobile, and that’s exactly what they did. However, the early cooling systems were … simple. Scientifically known as “thermosyphon systems,” the hot coolant in the engine rose upward into the top tank of the radiator. As it cooled, it fell to the bottom of the radiator, where it then would flow into the engine block. The result was a continuous circulation of coolant through the engine, requiring no water pump or thermostat to make it work.

Although the early cooling system worked well, it had no choice but to evolve, as engines got bigger and became more powerful. If you think about an engine on a scientific basis, it’s nothing more than a way to convert heat energy into mechanical energy. Basic logic tells us that the more power an engine produces, the more heat is generated that must be removed.

Since cooling systems needed the ability to remove more heat, they quickly evolved into utilizing water pumps and thermostats. Thermostats always have had two purposes. First, the engine coolant must remain in the radiator long enough to transfer its heat to the air. When the thermostat is closed, it allows sufficient time for this to occur, and when it opens, the coolant flows into the engine and is able to absorb heat to begin another cycle.

Second, engines need to operate near the boiling point of water. Why? Because water is a byproduct of combustion, and this high operating temperature ensures that water is evaporated from the engine oil during operation. Without the thermostat set to keep things hot, the engine oil cannot burn off water and will quickly become contaminated.

Cooling systems, even as we entered the era of fuel injection and electronic management, remained fairly simple at first. But we knew that engine temperature was directly related to fuel economy, emissions and power output, and that maintaining that temperature where we wanted it was a necessary step to achieve our goals in those areas.

It didn’t take long before the need for precise engine-temperature control became a prevailing factor affecting both engine and cooling-system design. Many components that we thought would never change began to receive a full dose of technology. Here’s a look at how things are shaping up for the future.

Thermostats

While not an everyday item yet, electrically controlled thermostats are being utilized in some applications, and I expect we’ll see an increase in this. The ability of an internal-combustion engine to achieve maximum fuel economy, minimum emissions and maximum power occurs at slightly different temperatures for different operating conditions. By adding this additional level of precision to temperature control, we can match temperatures to operating conditions, increasing power output and fuel economy.

This need for precise temperature control is why modern fuel-management systems monitor coolant temperature and if there is any deviation outside of the expected norm, a very common diagnostic trouble code (DTC) is P0128 (“Engine Coolant Below Regulating Temperature”). As time goes on, we can only expect this to become a parameter that’s much more closely monitored.

To further illustrate the advantage of an electronically controlled thermostat, consider traditional (old-school) thermostat operation. As the engine warms up, the radiator and hoses remain cold. When monitoring cooling-system performance as a technician, it’s common to keep a hand wrapped around the upper radiator hose. It stays cold until the thermostat opens; then it gets hot really quickly as the coolant flows from the engine into the radiator.

Then we use our hands to feel the radiator tanks warming up, and when they do, we then expect that the electric cooling fans (if equipped) are due to come on within a few moments, and we often move our hand into the path of the air coming off of the cooling fan to sense the volume of airflow and amount of heat being drawn off the radiator. Hi-tech is watching the engine temperature on a scan tool while this happens.

The point of this? The overall process of heat transfer is slow, and extreme precision is not possible with a traditional thermostat. As a result, the most advanced engine-management systems are looking ahead at engine temperature based on throttle position and calculated load, so that they can precisely manage engine cylinder and head temperature, effectively managing combustion efficiency. It’s impressive. Electronics and electronic thermostats make it all possible.

Water Pumps

What could possibly change about water pumps? That’s what I used to think, but they are changing. As effective as a traditional belt-drive water pump always has been, if we look at them from an old-school operational standpoint, as we did thermostats, we begin to see the flaws in their operation. Traditional belt-drive water pumps run the whole time at the speed of the engine, but with modern temperature-management technology, it’s not necessary for them to run constantly. Not only does this create an unnecessary drag on the engine, but it also can reduce the accuracy of precise temperature control.

By redesigning the traditional water pump and adding electric water pumps into the system, unnecessary drag is eliminated, and the engine-management system is able to generate coolant flow when needed, as needed. This can help reduce warmup time and also improve overall temperature control.

Electric water pumps also have the advantage of remote locations in engine compartments, which is beneficial as space becomes more and more constricted, and they are utilized for after-run features to help cool components such as turbochargers.

Cooling Fans

Electric cooling fans are not new by any means, but they no longer are a simple on-or-off type of fan. Early fans often employed a resistor to create both a low- and high-speed option, but many of today’s fans are pulse-modulated variable-speed fans that again give the engine-control module the ability to match fan speed with other operating conditions.

Active Grille Shutters

The newest member of the cooling-system technology family is the active grille shutter. Many manufacturers are utilizing this technology on certain vehicles, which, as you might have guessed, looks just like a set of shutters over some portions of the radiator. This can improve vehicle aerodynamics as well as decrease warmup times. They only open when needed to allow for additional cooling.

Heater Cores

Heater cores are part of the cooling system. Even though they don’t generally affect system function in the terms of engine-temperature management, inadequate heat stemming from a restricted heater core is a common complaint. But a restricted heater core is sometimes misdiagnosed as a bad thermostat or vice versa. And some vehicles utilize an electric water pump specifically to move coolant through the heater core. If the pump is bad, it could be misdiagnosed as a restricted heater core. Cooling-system diagnosis always should take into account the ever-increasing complexity of HVAC systems.

Electric Vehicles

Just when you thought there couldn’t be any more, hybrid and electric vehicles are bringing additional changes. Did you ever think you would see a high-temperature radiator and a low-temperature radiator? Plus, a water-cooled air-conditioning condenser? You’ll start to see them on electric vehicles.

You also can throw in some valving and a high-voltage coolant heater to boost heater-core output, plus a completely different cooling circuit for the batteries, power inverter, transaxle and electric motor. The good news for us? There’s a lot more to fix and a lot more parts to sell.

So, when will they start to call it a PHMS? And I’m waiting for the day of GPS-monitored temperature-sensing microchips that float around the cooling system, reporting the exact temperature of the coolant along the way. Sound crazy? Probably. But if it ever happens, just remember where you heard it first.

The post

link hidden, please login to view
appeared first on
link hidden, please login to view
.

link hidden, please login to view

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Shell91
      Hi, I cannot find an engine mount ANYWHERE for my 2.4 litre 2007  Renault trafic. Can anyone point me in a direction where I can get one ? Been to an actual Renault trafic for genuine parts and the guy reckons they don’t make them anymore. 
    • By Counterman
      MAHLE Aftermarket announced the winner of the second segment of the “Powered by MAHLE” Engine Giveaway.
      The lucky winner, who is based in Missouri, has been awarded a vintage Chevrolet small-block engine (1967-2002) built by Baldwin Racing Engines of Friedheim, Missouri. The engine features all applicable premium MAHLE components. 
      The next segment of the “Powered by MAHLE” sweepstakes officially kicked off on Sept. 1 for the chance to win a Ford 302 engine with 315 horsepower and 330 foot-pounds of torque built by Jasper Engines & Transmissions.
      “The response from customers and fans continues to be extremely positive and our next giveaway – a Ford 302 – is certain to be a premium prize for your vehicle,” said Jon Douglas, president, MAHLE Aftermarket North America. “Participants still have several weeks to enter our third round of the program so there’s still ample time to get in on the action for a chance to win this awesome engine.”
      Non-winning entries for a segment will roll into the subsequent entry segments; but participants are encouraged to enter the sweepstakes on both Facebook and Instagram with a unique photo for each entry segment. The final engine-giveaway segment in this four-part promotion, will begin on Oct. 1
      In addition to the engine, winners will be provided a one-night hotel stay and entry to the Performance Racing Industry show in Indianapolis in December along with the opportunity to have dinner with “Team MAHLE” – the likes of which may include members of Kalitta Motorsports, John Force Racing, Tony Stewart Racing and others. 
      For the latest “Powered by MAHLE” updates, including  exclusive details on the remaining two segments of the program and how to enter, visit
      link hidden, please login to view and link hidden, please login to view or visit link hidden, please login to view. No purchase is necessary. Rules are available on
      link hidden, please login to view. The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Platform-sharing” and “badge engineering” are terms often used to describe the common industry practice of developing multiple vehicle models from a common design. The economy of a single design underpinning multiple vehicles allows manufacturers to streamline the development process, and to provide the buyer with options across their base, mid-line and luxury divisions. Much of this “twinning” occurs within a manufacturer’s “family” of brands, but cooperating with rival manufacturers already well-established in a market allows the manufacturer to produce vehicles outside their wheelhouse.
      Ford Motor Co. has a long history of platform-sharing among its Ford, Lincoln and Mercury divisions, in addition to several collaborations with outside OEMs. As a global company for more than 100 years, Ford’s U.S. arm also has benefitted from the engineering of its European, Australian and Asian divisions.
      Since its establishment in 1939, Mercury was positioned as Ford’s mid-range division, filling the price gap between the Fords and Lincolns. Mercury served this role until 2010, when the division was shuttered. The last Mercury rolled off the assembly line in January 2011. That final Grand Marquis had shared the Panther platform with the Ford Crown Victoria and the Lincoln Town Car – two models that also would be discontinued later that year. Prior to its closure, Mercury also had offered mid-range versions of the Mustang (Capri), Taurus (Sable), Escape (Mariner) and Explorer (Mountaineer).
      Rebadging the Explorer has been a cottage industry for Ford. In addition to the Mountaineer, Lincoln offered the Aviator from 2003 to 2005, the MKT from 2010 to 2019 and the Aviator again beginning in 2020 (now based on the latest Explorer CD6 platform). After prior collaborations on Ford’s Courier and Ranger pickups, Mazda also was an early adopter of the first-generation Explorer platform. The Mazda Navajo was built alongside the Explorer in Louisville, Kentucky, from 1991 to 1994. Mazda and Ford later would co-develop the Tribute and Escape for 2001.
      This kind of sharing hasn’t always been the case at Ford. At the end of World War II, Ford of Canada divided up its dealer networks, establishing standalone “Ford” or “Lincoln-Mercury” dealers throughout Canada. An unforeseen outcome of this separation was that the Lincoln-Mercury dealers did not have economy models or trucks. In 1947, these dealers received the first of the “M-series” trucks, which essentially were re-badged F-series Fords. A budget line of “Meteor” passenger cars was introduced in 1949. Ford dealers received the “Monarch” line of mid-priced vehicles to fill the gap in their own lineups. This arrangement continued until the 1960s, when tariffs on vehicle trade across our northern border were eliminated.
      Mercury trucks were never sold in the United States, but in 1993, Mercury buyers were offered their first minivan, the Villager. This actually was a joint venture between Ford and Nissan, with Nissan-badged versions carrying the Quest nameplate. The Villager was assembled by Ford, but featured a 3-liter Nissan FWD drivetrain. It later would be replaced by the Windstar, which had no equivalent Mercury companion model at the time. The Windstar was renamed the Freestar for 2004, and regained a Mercury companion in the Monterey.
      Lincoln, founded in 1917 and purchased by Ford in 1922, still represents Ford’s luxury division. Long known for large cars like the Continental and the Town Car, Lincoln in 2021 transitioned exclusively to crossover and SUV platforms. Lincoln had even tried its hand at pickup trucks, with the 2002 Blackwood, and the 2006-2008 Mark LT. Both were rebranded luxury versions of the F-150 crew cab platform.
      In 2007, Lincoln adopted a new model-naming convention, playing on the heritage of the “Mark-series” nameplate used through 1998. The MKX and MKZ were the first of these, with the MKZ sedan being the Lincoln version of the Ford Fusion and Mercury Milan, and the MKX being a Ford Edge-based crossover (“X”-over). Originally intended to be spoken as “Mark-X” and “Mark-Z,” both vehicles were produced on the same CD3 platform originally developed for the Mazda 6. The MKS sedan (based on the Taurus) and the full-size Explorer-based MKT followed in 2009 and 2010, respectively.
      In 2015, the MKC compact crossover was introduced, built on the Escape platform. Lincoln has since dropped the “MK” designations in favor of proper names for its crossover and SUV lineup, which is a relief to anyone who has misheard or misspoken these similar-sounding model names while looking up parts!
      Ford-Lincoln-Mercury (FLM) dealerships once were a common sight here, with all three divisions available in one location. But, after a decade without Mercury, Ford-Lincoln dealers are fracturing yet again. In 2019, Lincoln began an initiative to develop standalone Lincoln dealerships to market more exclusively to the upscale clientele of the luxury-car market. Targeting 30 U.S. metro areas, Lincoln-only showrooms have already opened in half of the roughly 150 planned locations. Sales are up at these dealerships, but they still don’t have pickup trucks!
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Rack-and-pinion steering is the predominant type of steering system on vehicles today.
      Simplicity is one of the reasons for their popularity. On these systems, an inner and outer tie-rod end on each side connects the steering rack to the steering knuckle. The inner tie-rod ends tend to last longer than the outers because they have a smaller range of motion, and they simply don’t get the same abuse as the outers on these systems.
      Throughout the life of a vehicle with rack-and-pinion steering, it’s not uncommon to replace outer tie-rod ends multiple times, and rarely or never replace the inners – as long as the boot (also known as bellows) that protects them from dirt and moisture isn’t damaged.
      Before rack-and-pinion steering became popular, a parallelogram steering linkage was the predominant setup on most cars and trucks, consisting of a pitman arm, idler arm, center link and inner and outer tie-rod ends on each side. The tie rods are connected by a tie-rod sleeve. Even after rack-and-pinion systems became popular and virtually standard on all cars, parallelogram steering remained in use on trucks, vans and heavy-duty vehicles for many years, but today rack-and-pinion is becoming more common on them too.
      There’s another type of steering system you may run across, also common on some trucks and heavy-duty vehicles, and it consists of a drag link and tie rods. The difference is there’s no idler arm. A drag link goes from the pitman arm to a tie rod that connects to the steering knuckle, and second tie rod runs from the first to the other steering knuckle.
      Terminology can vary, but don’t let that throw you. In this illustration, No. 4 is the drag link, No. 2 and No. 1 are tie rods. Some people may refer to the drag link as an inner and outer tie rod. Also note No. 6, a steering damper, is a common feature on heavy-duty vehicles.
      When selling steering components, it can be useful to look at a diagram, in case your customer is unsure of the name of the component they need. You also can use it as an aid in pointing out additional items they may need.
      The Quality Question
      It’s not uncommon to be asked about quality, especially with the different lines and varying cost of the steering components you sell. The “economy” or “value” line is designed to make it affordable to repair a vehicle. There’s nothing wrong with these components. I’ve used them many times, and they’re as safe as any other. Will they last as long? Most likely not, but many people choose to go this way because it’s simply all they can afford, and we all can respect that.
      On heavy-duty or vehicles that the owner plans to keep long-term, it’s best to recommend a higher-end line of components. They’ll last longer, and you also can remind your customer that every time you replace a steering component, an alignment must be performed. That’s an additional cost, and worn components also will cause abnormal tire wear. A less expensive component that doesn’t last as long actually might cost more in the long run.
      Where’s the Grease Fitting?
      Fewer steering components come with grease fittings than in the past. Many people perceive this as a sign of “cheap” or low quality. This is far from the case. Many high-quality steering components today are constructed with better materials and higher-quality lubricants. Lack of a grease fitting doesn’t mean low quality. But it does mean there’s no way a poor-quality lubricant can be added to the joint, it can’t be over-greased, and there’s no way for moisture or contaminants to find their way in either.
      Here’s the kicker: Is your customer going to personally grease the fittings themselves? As a professional technician, if I had a nickel for every greaseable joint I’ve seen that was completely worn out, with not even a remote sign of grease ever having touched the zerk fitting … you know the rest. This is reality. Blame it on whomever. If the greaseable joints aren’t going to be greased, I’d rather have those not designed for it.
      Extras
      There are a few good suggestions to keep in mind when selling steering components. If it’s a rack-and-pinion vehicle, rack boots are a good suggestion since the outer tie-rod ends must be removed to replace them. On parallelogram steering, when tie rods are replaced, tie-rod adjusting sleeves are a huge benefit. These are almost always rusted in place and difficult to loosen and turn. New sleeves make the installation much quicker, as well as the alignment. If the vehicle has a steering damper, it’s always a great recommendation. These tend to get ignored, but are commonly worn out. And finally, don’t forget grease for the grease gun, and shop rags to clean up the mess.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • 30% OFF all service and repair manuals
    • By Buy Auto Spare Part
      Meta Description: Looking for a reliable car parts
      link hidden, please login to view Look no further! Experience top-notch services, competitive prices, positive customer reviews, and a solid warranty for all your car part needs. Enjoy the Best Services, Unbeatable Prices, Glowing Reviews, and Long-lasting Warranty  Condition: 74K, RAN GOOD Rating: 3/5 stars Warranty: 90 days Compatibility: Will fit 3.9L, VIN A, 8th digit, DOHC, 8-239 Additional Details: LH valve cover damaged, Less oil fill tube link hidden, please login to view


×
  • Create New...