Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, X, and LinkedIn. 

     

Continental Introduces Analog High-Definition Camera Systems


Recommended Posts

Continental has expanded its line of vehicle camera systems.

Continental’s new Platform AHD (analog high-definition) camera systems are designed to enhance the driver’s view and improve fleet efficiency.

Built to support drivers when navigating complex situations such as tight warehouse aisles, busy constructions sites or crowded shipping facilities, these camera systems provide vehicle operators with the extended visibility they need to get a better view of their surroundings and make their operations safer, according to the company.

Continental’s AHD camera systems feature 2-megapixel cameras with high image clarity and infrared lights for enhanced night vision. The camera line includes rear-view and front- and side-view cameras. The displays work with both CVBS and AHD camera inputs. Video can be stored in a DVR for future driver analysis and training.

Offered with 7-inch and 10.1-inch AHD displays, the AHD camera systems can integrate seamlessly with Continental ultrasonic sensors to deliver back up detection that warns the operator of obstacles behind the vehicle. The cameras feature IP 67 enclosures that are waterproof and dust-tight. The systems are available with dual voltage (12-volt and 24-volt) and offered in different cables sizes.

For more information, visit

link hidden, please login to view
or contact salessupport-us@continental.com.

The post

link hidden, please login to view
appeared first on
link hidden, please login to view
.

link hidden, please login to view

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Counterman
      Women in Auto Care is introducing its revamped Connection Circle, Women of the World. The event will take place the first Wednesday of every month beginning in May. 
      “Join Dunya and Ellonyia as they host this engaging connection circle to discuss ways in which women can strengthen their visibility and amplify their roles within the automotive industry! The goal of this connection circle is to break barriers and challenge global stereotypes,” the announcement on LinkedIn said.
      The goal is to unite women from every corner of the globe to inspire, support, and network. Together, we’ll amplify voices, break barriers, and forge meaningful connections, Women in Auto Care posted.

      link hidden, please login to view will take place on May 1at 12 p.m. CST. The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      AMSOIL has added a new 0W-40 viscosity to its line of OE 100% synthetic motor oil to better meet the emerging demands of advanced automotive technology.
      The new OE 0W-40 is primarily for newer RAM HD trucks equipped with the 6.4-liter Hemi engine, AMSOIL noted.

      AMSOIL OE 100% synthetic motor oil is specifically designed to deliver maximum wear protection, fuel economy and emissions control for the longer drain intervals recommended by OE manufacturers, according to the company.  
      The motor oil is licensed by the American Petroleum Institute (API) to meet and exceed the requirements commonly found in owner’s manuals. AMSOIL OE 100% synthetic motor oil also is friendly toward modern emissions-control systems to promote proper operation of catalytic converters for optimum service life and low exhaust emissions, according to
      link hidden, please login to view.   Low-speed pre-ignition (LSPI) is a common issue found in today’s advanced engines and is much more destructive than typical pre-ignition. OE 100% synthetic motor oil achieved 100% protection against low-speed pre-ignition (LSPI), based on testing required by the GM dexos 1 Gen 2 specification. 
      The motor oil provides 47% more wear protection than required by the GM dexos 1 Gen 2 specification, based on independent testing cited by AMSOIL.
      “AMSOIL OE 100% synthetic motor oil has a 100% synthetic, pure chemical structure engineered to remove harmful contaminants and provide long-lasting engine protection and performance,” AMSOIL said in a news release. “It features an advanced detergent and dispersant additive package designed to protect against sludge and deposits to deliver maximum engine cleanliness.”
      AMSOIL OE 100% synthetic motor oil is available in the following viscosities: 0W-16, 0W-20, 5W-20, 5W-30, 10W-30 and 0W-40. 
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      Lumileds has introduced the Philips GoPure GP5611 automotive air purifier, designed to clean air quickly and efficiently to reduce the transmission of airborne viruses, bacteria and allergens.
      Designed to fit in most vehicle cup holders, the USB-powered GP5611 filters the cabin air with three technologies: a Philips SaniFilter Plus filter, a HESAMax filtration cartridge and a powerful UVC light, according to Lumileds.  
      The Philips SaniFilter Plus filter captures bacteria and respiratory viruses as well as airborne allergens including pollen, dust mites, mold spores and pet dander. It features an anti-microbial layer to inhibit the growth of microorganisms inside the device, including mold spores.
      The SaniFilter Plus filter has been tested at IUTA laboratory in Germany and proven to capture 99% of ultra-fine particles, including particles as small as 0.004 microns that can get deep into the lungs and create serious health risks, according to Lumileds.
      The Philips HESAMax cartridge (high-efficiency sorbent agent) removes chemicals, harmful gases and unpleasant odors from the car, including formaldehyde, toluene and volatile organic compounds (VOCs). The cartridge contains two types of HESA material: white beads that draw formaldehyde from the air, break it down and safely lock it within the cartridge; and black carbon beads that absorb unpleasant smells.
      For an added layer of protection, bacteria and viruses trapped in the GP5611 filters are killed by exposing them to ultraviolet light, according to Lumileds. UVC light has been used for sterilization in hospitals, hotels and public transportation for decades.
      Lumileds noted that the GoPure GP5611 UVC LED technology emits zero ozone.
      “The GoPure GP5611 is powerful enough to filter all the air in an average passenger vehicle in about 10 minutes, and since it fits in most vehicle cup holders, you can be up and running in less than a minute,” said Aubry Baugh, Lumileds senior manager, aftermarket marketing leader, NA.
      In typical use, the SaniFilter Plus and HESAMax filters only need to be replaced about once a year. The UVC LED module will last for the lifetime of the device, according to the company.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      The fuel system, as a whole, is responsible for delivering fuel from the tank to the engine, then metering it into the combustion chamber. It consists of the tank, the lines, the pump and the metering device. If only it was as simple as it sounds. The challenge lies in the continual changes over the last century, and how the frequency of changes has increased over recent decades.
      The heart and identity of any fuel system is the metering device or system that controls the flow of fuel into an engine. As a counter professional, you’re going to hear it all, and you’ll have to answer it all, so here’s a rundown on the major changes and differences over the years.
      Carburetion Systems
      A carburetor is a basic mechanical device, and the primary metering device used on the earliest automobiles. Carburetors held their ground until the late 1980s, when the last examples were eventually replaced by fuel injection. The job of a carburetor is to not only meter the fuel but also to properly mix it with the air flowing into the engine through the process of atomization.
      As the automotive industry began to migrate to fuel injection, a knee-jerk reaction opposing fuel injection ensued. We were familiar with carburetors, and liked the fact that they were mechanical devices that could be repaired and rebuilt using basic hand tools, and there were no electronics involved. Regardless of who made the carburetor or what style it was, an experienced technician could diagnose and repair a problem without the need for service information, scan tools or electronics.
      Though considered “simple,” carburetors are more complicated than they seem, with multiple different circuits to manage all aspects of engine operation. “Tuning” a carburetor – the art of balancing performance, efficiency and drivability – takes a considerable knowledge of engine operating principles, and the patience and precision to get it right.
      The majority of carbureted vehicles utilize mechanical fuel pumps, driven off the engine. This too adds to the attraction of these vehicles, as again there were no electronics involved. The drawback to carburetors came in their lack of ability for precise fuel control. They simply couldn’t keep up with the tightening noose of emission and fuel-economy standards that was in full force by the 1970s. As the end of their use in production automobiles came near, some electronics were incorporated into them, but ultimately proved ineffective.
      Today, any professional will admit – regardless of complexity – that fuel injection is simply superior and necessary. However, carburetion is still popular on old vehicles, partly because of its relative simplicity, but also due to the popularity of restoring old cars to their original state. While far from commonplace, carburetor rebuild kits aren’t going away anytime soon.
      Fuel-Injection Systems
      The advantage of fuel injection is the ability to precisely control fuel delivery under all operating conditions. Not only is this a necessity for emissions and fuel economy, but it also has a major advantage in drivability – an operational attribute that goes hand in hand with efficiency and performance.
      Attempts at fuel injection are as old as the internal combustion engine itself, but in the early days, too many bugs made it undependable. By the 1950s, substantial engineering efforts were applied to develop fuel injection, both in the United States and Europe. One of the more well-known systems was the original Rochester fuel injection developed by Chevrolet for the 1957 Chevrolet and Corvette.
      The idea behind developing this fuel injection wasn’t in the interest of horsepower or emission control. It was drivability, with the goal to eliminate the undesirable and unavoidable attributes of a carburetor, including fuel slosh in the fuel bowl and the transition between primary and secondary circuits. As you may expect, racers played a substantial part in all this, and the best part is they were very successful, and it unlocked horsepower as well!
      The Rochester fuel-injection system was available from 1957 through 1965, but it ultimately failed for only one reason: cost. It was an expensive option, and with the muscle-car wars in full force and much higher-horsepower carbureted engines available for a fraction of the cost, nobody was buying.
      By the late 1970s, fuel injection was better-developed, and this time emissions and fuel economy played a strong part. It began its rise to the top, and thanks to the advancements in electronic and computer technology, it got there quick. By the early 1990s, carburetion was all but gone from production automobiles.
      Fuel-injection systems can be separated into multiple categories and types, and since you’ll hear multiple terms, here’s how to tell them apart.
      Mechanical Fuel Injection
      Early gasoline fuel-injection systems were mechanical. The pumps were mechanical, and fuel was delivered directly to nozzles located in the intake manifold. The pressure of the fuel caused the fuel injectors to open. A type of air meter was necessary, but early systems relied primarily on vacuum signals or mechanical linkage between the air meter and fuel-distribution meter to determine the proper amount of fuel. Very minimal if any electronics were involved in these systems.
      Early diesel fuel-injection systems were purely mechanical as well, but the difference was the required fuel pressure. It doesn’t require much pressure to inject fuel into an intake manifold, but it requires extremely high pressure to inject fuel directly into a cylinder (such as is necessary for a diesel). Diesel-injection pumps housed a mechanical high-pressure pump to feed the fuel to the injectors.
      One of the most common gasoline fuel-injection systems to become popular beginning in the late 1970s was the Bosch Continuous Injection System (CIS). This, too, was overall a mechanical system, but an electric pump supplied the fuel, and minor electronics played a part in cold-start functions as well as fuel-mixture control.
      Electronic Fuel Injection
      Electronic fuel injection was a terminology that became well-known in the 1980s and was often indicated by the letters “EFI” on the back of a car. It seemed revolutionary at the time, and it indicated that the systems were now completely electronically controlled. It was this point in time when fuel pumps found their way into the gas tank; injectors were basically solenoids that opened the injector upon command from a computer; and the computer – along with a myriad of sensors – controlled everything surrounding the operation of the system.
      Even though EFI was an early term that would now be as redundant as saying you have antilock brakes on a new car, it’s technically still an accurate term. It’s just not used often because it’s assumed – and correctly – that everything on a new car is tied to electronics. EFI is a term that can include many different types of fuel injection.
      Throttle-Body Injection
      Throttle-body injection (TBI) refers to the fuel injector(s) being located in a throttle body that looks almost like a carburetor at a glance. This was done by design, as it was the most efficient and quickest way for auto manufacturers to make the change to fuel injection, while utilizing many of the same components they already had such as the same intake manifolds and air cleaners. TBI was most common in the 1980s and early 1990s.
      We’ve always loved fancy names. Have you ever heard of cross-fire injection? It was two throttle bodies at opposite corners of the intake manifold.
      Port Fuel Injection
      TBI was at a disadvantage because airflow was interrupted by the injector, and port injection was the next advancement in line. Port, or multi-point injection injects fuel into the intake runner just before the intake valve for each cylinder. The advantage is the ability to precisely control the fuel delivery and balance the airflow into each cylinder, leading to increased power output and improved fuel economy.
      Early mechanical fuel-injection systems were port-injection systems, sans electronic control. Seem confusing? Many fuel-injection terms cross over from new to old technology. There are just so many manufacturer-specific names that it can be confusing! Like EFI, port injection was widely advertised as the latest greatest advancement, with tuned port injection topping the performance charts. Port injection still is the most common type of fuel injection used today, but when was the last time you saw it called out? Nobody really says it anymore because it’s not new. But there’s another technology that we’re not done talking about, and that’s direct injection.
      Direct Injection
      Direct means the fuel is injected directly into the combustion chamber. Direct injection has been around for years in the diesel world, but it’s still relatively new for gasoline engines. The challenge with this type of injection is injecting the fuel into the high compression of the combustion chamber. Just like a diesel, it requires extremely high fuel pressure, and gasoline direct injection utilizes a typical electric pump to supply fuel to the rail, plus a mechanically driven high-pressure fuel pump to supply the necessary pressure for injection.
      The primary advantage of direct injection is that there’s less time for the air/fuel mixture to heat up since the fuel isn’t injected in the cylinder until immediately before combustion. This reduces the chance of detonation, or the fuel igniting from the heat and pressure in the cylinder. This allows a direct-injected engine to have higher compression, which itself lends to higher performance.
      There are additional advantages of reduced emissions and better fuel economy, but there also are some now-familiar drawbacks, including carbon buildup on the backs of the intake valves, low speed pre-ignition and limited high-rpm performance. For this reason, many manufacturers are combining both direct- and port-injection systems.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • A-premium Auto Parts:5% OFF with Code GM5.
    • By Counterman
      FCS Automotive announced the release of 18 new part numbers.
      The release includes four shock absorbers covering nearly 3.6 million vehicles in operation, and 14 suspension struts covering 5.4 million vehicles in operation.
      All of the units are in stock and ready to ship, FCS noted.
      The new numbers cover some of the most popular applications on the road today, including the Audi A3, Chevrolet Tahoe, Ford Bronco, Jeep Compass, Mazda 3, Mercedes Benz E350, Nissan Sentra and more, according to the company.
      “FCS remains committed to be first to market with new numbers, while providing the most comprehensive market coverage in North America – well-beyond our nearest competitor,” FCS said in a news release.
      As a global supplier in more than 40 countries, FCS products are produced to meet strict OE quality processes backed by extensive in-house testing and IATF 16949 and ISO 14001 certifications, according to the company.  
      For more information, call 866-708-4554 or visit
      link hidden, please login to view. The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

×
  • Create New...