Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn. 

     

How To: Replace the Serpentine Belt, Tensioner, and Idler Pulley on a Chevy 5.3 Liter V8 Engine


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

  • Similar Topics

    • By chevyguy
      I've got a 2014 Chevy Equinox with new pluigs, coils, fuel injectors, recent top-engine carbon clean, new AC Delco O2 sensors, and relitively new CAT. Getting a P219A-00 for Fuel trim cyliner balance. Any ideas where to start diagnosing? I saw this online as possible causes:
      Leaking or contaminated fuel injectors Low fuel pressure or running out of fuel Leaking evaporative emission (EVAP) canister purge valve Exhaust or intake air system leaks Exhaust gas recirculation (EGR) system Positive crankcase ventilation (PCV) system is leaking or the valve is stuck open Ignition system Incorrectly seated engine oil dipstick, tube or oil fill cap Just curious if anyone has had this issue with a GMC of Chevy and succesfully diagnosed.
    • By Harley M
      Hey there, I am curious if anyone knows where to locate the “plug” to INSTALL a block heater in my 2013 Chevy Equinox LT 2.4L.
      I have not been able to find anything online about where a block heater can be installed and if it even has a plug to slide through. Am I better off getting a magnetic block heater?
       
      Thanks in advance. 
    • By Counterman
      You might not be able to see it, but an accessory-drive belt is always both speeding up and slowing down. When a piston accelerates downward after the ignition of the fuel and air, the crankshaft speeds up and then slows down as it reaches the bottom of the stroke. These changes in speed are minimal, but big enough to cause problems over time.
      If the pulses aren’t minimized, they can hammer the belt and the attached rotating components. On a four-cylinder engine, the degrees of rotation between power pulses are greater than on a V-8 – so the amount of change in speed on the four-cylinder pulley is greater than on a V-6 or V-8. This has a direct effect on how the belt system is designed.
      The belt-drive system is working hardest when the engine is at idle. When the engine is below 1,000 rpm, the alternator, A/C compressor and power-steering pump are putting the greatest strain on the belt.
      Some of the forces can be taken up by the belt slipping on the pulleys. But, slipping causes friction and wear on the belt, as well as flutter. Over time, the slipping can get worse as removal of material from the ribs causes the belt to bottom out.
      There are three components that help to keep the belt on the pulleys without slipping. The tensioner, harmonic balancer and decoupler pulley work together to keep the accessory-belt system quiet and the belt lasting until the replacement interval.
      Tensioner
      The tensioner applies force on the belt. Some tensioners have devices that dampen the movement of the spring and arm, helping to keep constant force on the belt even under a wide variety of conditions.
      Harmonic Balancer
      The harmonic dampener puts a layer of soft material between the crankshaft and outer ring of the pulley. The material helps to dissipate the power pulses and resonant frequencies. While the dampener may only flex one or two degrees of movement, this takes a lot of strain off attached components.
      Decoupler Pulley
      Some alternators have a decoupler pulley. This device serves two purposes. First, it helps to decouple the pulley from the alternator with a one-way clutch. The decoupler reduces parasitic losses by not having to fight against the momentum of the armature in the alternator while the engine is decelerating and accelerating.
      Some decoupler pulleys have a spring and friction dampener to reduce vibration. When an alternator decoupler pulley is compromised, it can no longer absorb the same level of abuse, which has a trickle-down effect throughout the system.
      Alternator decouplers and pulleys should be inspected every 10,000 miles for wear. Early design versions have a service life of 40,000 to 60,000 miles, with more recent versions lasting more than 100,000 miles.
      When inspecting a decoupler or pulley, there are two signs that replacement is needed. First, after shutting down the engine, if there’s an audible buzzing, the bearings in the pulley have likely failed. The second sign depends on whether the vehicle has a one-way clutch (OWC), overrunning alternator pulley (OAP) or decoupler (OAD).
      With the inspection cap/cover removed and the center locked, turn the pulley or decoupler with the appropriate tool. If it’s an OAP or OWC, the pulley can only be turned in the clockwise direction. If it’s an OAD, a counterclockwise turn will reveal a noticeable increase in spring force; a clockwise turn will only have slight resistance. The tensioner, harmonic balancer and decoupler pulley work together to keep the belt in contact with grooves in the pulleys. The three components are engineered together to match the engine. If one part is compromised, all are compromised, including the belt.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By Counterman
      MAHLE Aftermarket announces the remaining two winners of the inaugural “Powered by MAHLE” Engine Giveaway.
      The winner of a 302 Ford small-block engine is based in Killingworth, Connecticut, and can look to take home an engine backed with 315 horsepower and built by the technicians at Jasper Engines & Transmissions.
      The Gen III HEMI 7.0L engine built by Moonshine Speed Shop is going to one lucky winner in Curran, Michigan. 
      “Congratulations to the winners of these premium engine parts,” said Jon Douglas, president, MAHLE Aftermarket North America. “It was awesome to be able to partner with some of our Team MAHLE members to pull together such a memorable program filled with some incredible prizes. As our inaugural ‘Powered by MAHLE’ engine giveaway comes to a close, we are very pleased with the response we have gotten from our customers and fans and want to also express our gratitude to everyone who enter our sweepstakes and made it such a success.” 
      In addition to the engine, all four winners of this year’s sweepstakes program received a one-night hotel stay and entry to the Performance Racing Industry (PRI) show in Indianapolis, which took place Dec. 7-9 at the Indiana Convention Center.
      Winners who attended this year’s PRI show also were invited to a special “meet-and-greet” with a few “Team MAHLE” partners – the likes of which included members of Kalitta Motorsports, John Force Racing, Tony Stewart Racing and others. 
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • A-premium Auto Parts:5% OFF with Code GM5.
    • By APF
      Brake rotors may be replaced for a variety of reasons. One is that replacement is a must if the original rotors are worn out. Every rotor has a minimum thickness or discard specification cast or stamped somewhere on the center hat section of the rotor. When the brake pads are replaced, the rotors always should be measured with a micrometer to determine their thickness. If the rotors are worn too thin and are at or below the minimum or discard thickness (or they cannot be resurfaced without exceeding the limit), the rotors must be replaced.
      Worn-out rotors are dangerous for two reasons: Thin rotors cannot absorb and dissipate heat as well as new rotors, which increases the risk of the pads getting too hot and fading with prolonged or heavy braking. Also, thin rotors are more likely to crack and break apart, which would cause brake failure.
        Another condition that usually calls for rotor replacement is when the rotors are “warped” and are causing a vibration or pulsation when the brakes are applied. Warped is actually a misnomer, because the rotors are not distorted but are worn unevenly. When there is more than a couple thousandths variation in rotor thickness, it pushes the pads in and out when the brakes are applied. The force is transmitted back through the caliper pistons, brake lines and master cylinder all the way to the brake pedal, creating a vibration or pulsation that can be felt by the driver. The greater the variation in rotor thickness, the stronger the vibration or pulsation. It’s a really annoying condition, though not necessarily an unsafe one. It may be mistaken by the vehicle owner for a problem with their antilock brake system, which also can produce pedal pulsation or vibrations when the ABS system kicks into play.
      Uneven rotor wear and thickness variations can be caused by severe rotor overheating (a dragging brake pad or stuck caliper), by distortion in the rotor caused by uneven torque or over-tightening the lug nuts, or even metallurgical defects in the rotor casting itself. High spots on the rotor will often be discolored with a dark bluish tint. Resurfacing the rotor can restore flat parallel surfaces, but often the hard spots that are caused by overheating or uneven wear extend into the metal surface. Over time, this will cause uneven wear again and the pedal pulsation or vibration to return. Replacing the rotors with new ones eliminates any such worries.
      Rotors also must be replaced if they are cracked, damaged or severely corroded. The danger is rotor failure due to the cracks or severe corrosion. Some minor heat cracking on the surface may be acceptable, but heavy or deep cracking is not.
      Another reason to replace rotors is to upgrade braking performance and/or the appearance of the vehicle. Drilled or slotted rotors do add a performance look to any brake system, and they also can provide improved cooling for the rotors and venting for the pads. The holes and/or slots provide an escape path for hot gases that can form between the pads and rotor when the brakes are working hard. Holes and slots or wavy grooves in the rotor face also create turbulence, which improves airflow and cooling.
      Some vehicles come factory-equipped with “composite” rotors that have a thin stamped steel center hat section mated with a cast rotor body to save weight. This type of rotor tends to be more sensitive to uneven wear and distortion than one-piece cast rotors. Composite rotors also are more costly to replace, so one-piece aftermarket cast rotors are a replacement option. However, if replacing composite rotors with one-piece castings, both rotors (right and left) should be replaced at the same time to maintain even braking and alignment side-to-side. On some vehicles, replacing a composite rotor with a thicker cast rotor also may alter wheel geometry slightly, creating increased toe-out and tire wear when turning.
      Source: 
      link hidden, please login to view

×
  • Create New...