Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, X, and LinkedIn. 

     

How To: Replace the Serpentine Belt, Tensioner, and Idler Pulley on a Chevy 5.3 Liter V8 Engine


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Content

  • Similar Topics

    • By Counterman
      It seems like everything old is new again. TV and movie producers love to “reboot” our favorite classics, musicians regularly cover or sample from songs we all know (and sometimes loved). Fashions from high school that make us cringe will be back in style sooner or later.
      It can serve to bring us together by introducing younger generations to the things their parents knew and loved, or drive a wedge between us as we argue over which version is better. For the record, I’m the grumpy old guy who argues that the original is always better … but I don’t think I ever expected to see another Mazda with a rotary engine.
      The Wankel rotary engine was a unique (if somewhat flawed) design that had last appeared in the 2012 Mazda RX8. Designed by German engineer Felix Wankel in the 1950s, various displacements of the two-rotor engine appeared in Mazda production vehicles beginning in 1967. In addition to the more familiar RX7 and RX8 sports cars, Mazda also produced roughly 15,000 rotary-powered B-series pickups from 1974-1977, and even put its tiny 1.3-liter rotary into a small bus in 1974. A prototype four-rotor engine powered Mazda to a win at LeMans in 1991.
      The rotary design is unique in that it only has three moving parts. An eccentric shaft and a pair of three-sided rotors move inside a pair of roughly oval chambers, completing the traditional Otto-cycle of intake, compression, combustion and exhaust without the use of reciprocating pistons or a valvetrain. Instead, the twin rotors spin around the eccentric shaft like a hula-hoop. The secret to the Wankel design is the geometric shape of the rotor, known as a Reuleaux triangle. The fattened triangular shape of the rotor has a constant width, always sealing the chamber in three places throughout the cycle … in theory.
      Sealing was an issue for the early Mazda rotary engines, with the apex seals at the three points of the triangle tending to fail. Like a piston ring in a reciprocating engine, the apex seal is responsible for maintaining compression throughout the cycle. This problem dogged the brand for years, but another inherent issue is in the housing design itself.
      With the intake and compression strokes occurring at the top of the oval chamber, and the combustion and exhaust events at the bottom, the housing experiences uneven heat buildup. This leads to one of the more confusing cataloging elements of the rotary Mazdas: “leading” and “trailing” spark plugs.
      Due to the heat differential between the upper and lower portions of the housing, the stock spark plugs are of different heat ranges. The leading plug (the “lower” position) is a hotter plug than the trailing (“top” position), although some enthusiasts prefer to run trailing plugs in all four positions. (Each rotor/chamber houses a pair of plugs.)
      Inability to meet increasingly strict fuel-efficiency and emissions requirements ultimately killed the original rotary engine, but in 2023, Mazda resurrected the design. A single-rotor 830cc Wankel engine can now be found in the Euro-spec MX-30 e-Skyactiv R-EV plug-in hybrid. Unfortunately for RX enthusiasts, the engine serves only as a range extender for the PHEV variant of the MX-30, powering a generator rather than powering the drivetrain directly.
      With improved compression, gasoline direct injection and an EGR system, this engine is much cleaner and efficient than previous rotaries. We’ll see if this improved technology can make its way back into the U.S. market, but for now, the European-engineered Wankel rotary engine has returned to its roots, thanks to the Mazda engineers who have believed in this funky little powerplant for nearly 60 years.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By chevyguy
      I've got a 2014 Chevy Equinox with new pluigs, coils, fuel injectors, recent top-engine carbon clean, new AC Delco O2 sensors, and relitively new CAT. Getting a P219A-00 for Fuel trim cyliner balance. Any ideas where to start diagnosing? I saw this online as possible causes:
      Leaking or contaminated fuel injectors Low fuel pressure or running out of fuel Leaking evaporative emission (EVAP) canister purge valve Exhaust or intake air system leaks Exhaust gas recirculation (EGR) system Positive crankcase ventilation (PCV) system is leaking or the valve is stuck open Ignition system Incorrectly seated engine oil dipstick, tube or oil fill cap Just curious if anyone has had this issue with a GMC of Chevy and succesfully diagnosed.
    • By Harley M
      Hey there, I am curious if anyone knows where to locate the “plug” to INSTALL a block heater in my 2013 Chevy Equinox LT 2.4L.
      I have not been able to find anything online about where a block heater can be installed and if it even has a plug to slide through. Am I better off getting a magnetic block heater?
       
      Thanks in advance. 
    • By Counterman
      You might not be able to see it, but an accessory-drive belt is always both speeding up and slowing down. When a piston accelerates downward after the ignition of the fuel and air, the crankshaft speeds up and then slows down as it reaches the bottom of the stroke. These changes in speed are minimal, but big enough to cause problems over time.
      If the pulses aren’t minimized, they can hammer the belt and the attached rotating components. On a four-cylinder engine, the degrees of rotation between power pulses are greater than on a V-8 – so the amount of change in speed on the four-cylinder pulley is greater than on a V-6 or V-8. This has a direct effect on how the belt system is designed.
      The belt-drive system is working hardest when the engine is at idle. When the engine is below 1,000 rpm, the alternator, A/C compressor and power-steering pump are putting the greatest strain on the belt.
      Some of the forces can be taken up by the belt slipping on the pulleys. But, slipping causes friction and wear on the belt, as well as flutter. Over time, the slipping can get worse as removal of material from the ribs causes the belt to bottom out.
      There are three components that help to keep the belt on the pulleys without slipping. The tensioner, harmonic balancer and decoupler pulley work together to keep the accessory-belt system quiet and the belt lasting until the replacement interval.
      Tensioner
      The tensioner applies force on the belt. Some tensioners have devices that dampen the movement of the spring and arm, helping to keep constant force on the belt even under a wide variety of conditions.
      Harmonic Balancer
      The harmonic dampener puts a layer of soft material between the crankshaft and outer ring of the pulley. The material helps to dissipate the power pulses and resonant frequencies. While the dampener may only flex one or two degrees of movement, this takes a lot of strain off attached components.
      Decoupler Pulley
      Some alternators have a decoupler pulley. This device serves two purposes. First, it helps to decouple the pulley from the alternator with a one-way clutch. The decoupler reduces parasitic losses by not having to fight against the momentum of the armature in the alternator while the engine is decelerating and accelerating.
      Some decoupler pulleys have a spring and friction dampener to reduce vibration. When an alternator decoupler pulley is compromised, it can no longer absorb the same level of abuse, which has a trickle-down effect throughout the system.
      Alternator decouplers and pulleys should be inspected every 10,000 miles for wear. Early design versions have a service life of 40,000 to 60,000 miles, with more recent versions lasting more than 100,000 miles.
      When inspecting a decoupler or pulley, there are two signs that replacement is needed. First, after shutting down the engine, if there’s an audible buzzing, the bearings in the pulley have likely failed. The second sign depends on whether the vehicle has a one-way clutch (OWC), overrunning alternator pulley (OAP) or decoupler (OAD).
      With the inspection cap/cover removed and the center locked, turn the pulley or decoupler with the appropriate tool. If it’s an OAP or OWC, the pulley can only be turned in the clockwise direction. If it’s an OAD, a counterclockwise turn will reveal a noticeable increase in spring force; a clockwise turn will only have slight resistance. The tensioner, harmonic balancer and decoupler pulley work together to keep the belt in contact with grooves in the pulleys. The three components are engineered together to match the engine. If one part is compromised, all are compromised, including the belt.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • A-premium Auto Parts:5% OFF with Code GM5.
    • By Counterman
      MAHLE Aftermarket announces the remaining two winners of the inaugural “Powered by MAHLE” Engine Giveaway.
      The winner of a 302 Ford small-block engine is based in Killingworth, Connecticut, and can look to take home an engine backed with 315 horsepower and built by the technicians at Jasper Engines & Transmissions.
      The Gen III HEMI 7.0L engine built by Moonshine Speed Shop is going to one lucky winner in Curran, Michigan. 
      “Congratulations to the winners of these premium engine parts,” said Jon Douglas, president, MAHLE Aftermarket North America. “It was awesome to be able to partner with some of our Team MAHLE members to pull together such a memorable program filled with some incredible prizes. As our inaugural ‘Powered by MAHLE’ engine giveaway comes to a close, we are very pleased with the response we have gotten from our customers and fans and want to also express our gratitude to everyone who enter our sweepstakes and made it such a success.” 
      In addition to the engine, all four winners of this year’s sweepstakes program received a one-night hotel stay and entry to the Performance Racing Industry (PRI) show in Indianapolis, which took place Dec. 7-9 at the Indiana Convention Center.
      Winners who attended this year’s PRI show also were invited to a special “meet-and-greet” with a few “Team MAHLE” partners – the likes of which included members of Kalitta Motorsports, John Force Racing, Tony Stewart Racing and others. 
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

×
  • Create New...