-
Welcome to Auto Parts Forum
Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn.
Jeep Cherokee Coolant Temperature Sensor Replacement
-
Similar Content
-
- 0 replies
- 25 views
-
- 0 replies
- 53 views
-
- 0 replies
- 46 views
-
- 0 replies
- 40 views
-
- 0 replies
- 33 views
-
-
Similar Topics
-
By Counterman
Niterra North America Inc., formerly NGK Spark Plugs (U.S.A.) Inc., announced that the company is introducing 20 new part numbers for its O2-sensor line.
The new part numbers, sold under the company’s NTK brand, represent an increase in coverage for more than 4 million domestic, European and Asian vehicles in operation, according to Niterra North America.
“These 20 new part numbers fit a variety of late-model domestic and import vehicles and range from entry-level economy cars to luxury cars to cargo-vans to sport-utilities,” said Matthew Bickford, NTK product manager, aftermarket. “NTK is committed to application coverage leadership and providing service providers the latest OEM technology and we are excited to be able to extend our latest sensor technology into the aftermarket with these applications.”
For more information about Niterra and the NGK Spark Plug and NTK product brands, visit
link hidden, please login to view. The post
link hidden, please login to view appeared first on link hidden, please login to view.
link hidden, please login to view -
By Dorman Products
Car leaking coolant from engine or HVAC? Check out Dorman’s replacements and OE FIX solutions.
-
By Counterman
Volkswagen HVAC systems have come a long way in the past 20 years. While the basics of heating and cooling may be the same, the controllers and sensors have improved dramatically. No longer does a driver have to worry about dealing with fogged-up windows or bad smells driving behind a semi-truck.
When a driver sets a temperature in the control head of an HVAC system, what does it mean to the vehicle? Seventy-two degrees could be captured at many different settings depending on the outside temperature, humidity and even the position of the sun. When a passenger then decides that 70 degrees is a better temperature for her zone, things get even more complicated.
Automatic Temperature Control (ATC) systems require a complex array of internal and external sensors that look at the temperature, humidity and quality of the air inside the vehicle.
TEMPERATURE SENSORS
To maintain a preset air temperature, the VW HVAC system will typically have one or more interior air temperature sensors, an ambient (outside) air temperature sensor, and possibly one or two sunload sensors.
Interior air temperature sensors are usually simple, two-wire thermistors that change resistance with temperature, but some are infrared sensors that detect heat from the vehicle’s occupants. This thermistor-type usually has an aspirator tube that pulls air through the sensor when the blower fan is running. Others use a small electric fan for the same purpose. A plugged aspirator tube or inoperative fan will slow the sensor’s response to temperature changes.
Most air temperature sensors have a “negative temperature coefficient,” which means they lose resistance as the temperature goes up. A simple way to check this type of sensor is to use a blow dryer to heat the sensor. The resistance should drop as the sensor warms up.
Ambient air temperature sensors typically have a slow sample rate to even out variations in readings that may be sensed at different vehicle speeds. When the vehicle stops moving, heat can build up quickly around the sensor and could mislead the ATC module into thinking it’s getting hotter outside. So, most ATC modules look at the ambient sensor input only every couple of minutes instead of continuously. On some applications, the ATC module may even ignore input from the ambient sensor when the vehicle is not moving.
There are other temperatures in the various ducts. Also, most systems will have sensors before and after the heater and evaporator cores. These sensors measure the performance of the system.
SOLAR LOAD SENSORS
Many ATC systems also make use of a photodiode solar load sensor on the dash. This sensor allows the ATC system to increase cooling needs when the cabin is being heated by direct sunlight. On vehicles with dual-zone systems, there is often a separate sunload sensor for each side. Sunload sensors receive reference voltage from the ATC module and pass current when the light intensity reaches a certain threshold.
Some ATC systems have additional temperature sensors located on the evaporator and/or compressor to prevent evaporator icing and to regulate the operation of the compressor. Some vehicles also have duct temperature sensors and heater core temperature sensors to further refine temperature control. These are usually found on the dual-zone ATC systems.
HUMIDITY SENSORS
Humidity sensors are capacitance sensors that measure the amount of moisture in the air. The information from the sensor both regulates the volume of air projected onto the windows to reduce misting and manages the humidity levels inside the car to enhance climate comfort. These sensors are typically mounted at the base of the rearview mirror.
From the data delivered by the humidity and temperature sensor, the HVAC system calculates the dew point temperature of the air. Some systems use an infrared sensor that remotely measures the windshield and side window temperatures, as well.
The performance of the sensor can degrade over time and cause the sensor to malfunction and give false readings. If this happens, you will see a code stored in the HVAC module.
AIR-QUALITY SENSOR
Air-quality sensors can prevent harmful gases and unpleasant odors that can get into the car cabin when the vehicle is sitting in heavy traffic, passing through congested areas or driving through tunnels.
The sensor signals the fresh air inlet door/ventilation flap to close when undesirable substances are detected. Volkswagen, Audi and other import nameplate luxury car manufacturers are using this sensor. This sensor is typically mounted behind the grill. Just hot and cold? Not anymore!
The post
link hidden, please login to view appeared first on link hidden, please login to view.
link hidden, please login to view -
By NAPA
Engine coolant keeps the waste heat of the combustion process at bay. There’s no denying the importance coolant plays in keeping an engine running, but how do you know when it needs to be changed? But also to make sure your coolant is doing its job it needs to be monitored by a coolant sensor. Let’s look at how to test engine coolant, how to pressure test a cooling system, and equally important how to test coolant temp sensor operation.
Why Test Engine Coolant?
Your engine coolant is part of an enclosed system, but that system consists of many components of varying materials. Over time under the stress of extreme heat exposure the coolant loses some of its ability to control and conduct those temperatures. There are also parts of the cooling system that can corrode internally leaving tiny rust flakes that act like silty mud. There are all reasons why your engine coolant needs to be tested and periodically replaced when it has reached the end of its service life. But you need to test not only for the right coolant mixture ratio, but also the chemical composition of the coolant.
Testing Engine Coolant Ratio link hidden, please login to view
The easiest way to test coolant mixing ratio with an
link hidden, please login to viewr. This neat little device tests the specific gravity of the coolant using either little colored floating balls or a swing arm. The balls and swing arm are calibrated to float at different levels based on the specific gravity of the coolant. Simply draw coolant into the antifreeze tester and compare the results to the included chart. Typically on a floating ball type tester the higher the concentration of ethylene glycol, the more balls that float. You can then estimate the freezing point of the coolant and how well you are protected against the cold. Just be aware that there are different testers for propylene glycol and ethylene glycol, so choose a tester that matches what is used in your cooling system. For a more accurate measurement of your coolant’s freezing point you can use a refractometer. There are
link hidden, please login to viewand link hidden, please login to viewrefractometers but they both work on the same idea. Simply place a few sample drops of coolant in the tool. For the analog refractometer you then look through the eyepiece and read the inside gauge. For the digital refractometer you just have to push a button and the reading will be displayed on the screen. You will need to read the instructions and be familiar with the tool to understand what the results of each one means to the specific gravity of your coolant. Testing Engine Coolant Condition
As mentioned earlier your coolant can actually degrade over time. Luckily a simple
link hidden, please login to viewcan give you a glimpse of what is in your coolant. When the engine is cool and depressurized (never work on a hot engine’s cooling system) just remove the radiator cap and dip in a testing strip. Make sure to read the directions included with the testing strip to make sure you get a good reading. Most test strips can tell you the pH level, nitrate concentration level, and liquid freeze point. If any of these readings are out of specification, it is time for a link hidden, please login to viewand refill. How To Test A Coolant Temp Sensor
Knowing how to test coolant temp sensor output is a bit more technical. You will need a multimeter to read the resistance of the coolant temp sensor during the test. You will also need to remove the coolant temp sensor from your vehicle, so refer to a repair manual for the specific procedure. For sensor range testing you will need a container of ice water and a container of boiling water. Finally you need the factory sensor range specifications (usually found in the repair manual) along with a pen and paper to take notes.
Once you have the sensor out of the vehicle attach it to the connections on the multimeter. Most sensors have two connections and since you are testing resistance, it does not matter which order is used. If your sensor has more than two connections refer to a vehicle wiring diagram to find the ground connection and the voltage input connection.
You will be testing engine coolant temperature sensor resistance output in cold water and hot water, then comparing the two readings to the factory specification found in your repair manual. Check the temperature of the ice water to make sure it is as close to freezing as possible (32 degrees F or 0 degrees C). Set the voltmeter to the 20,000 ohm range. Dip the tip of the sensor in the cold water and observe the reading on the multimeter. When the reading stops changing, write it down on the paper as the cold reading. Repeat the same process with the boiling water, being careful to hold the sensor with tongs or similar tool to reduce the chance of touching the boiling water. Write down the hot temperature reading from the multimeter.
Now you can compare the two voltage readings to the factory sensor specifications. If the readings are not within specifications the sensor is bad and should be replaced. Now that you know the steps for how to test an engine coolant temperature sensor, you can decide if it is worth your time or if the sensor is cheap enough to just replace it and move on.
How To Pressure Test A Coolant System
Luckily learning how to pressure test coolant system components is pretty easy. You will need an
link hidden, please login to view which looks like a bicycle tire pump attached to a universal radiator cap. Start with a cool engine (never work on a hot engine cooling system under pressure). Remove the radiator cap or coolant reservoir cap if so equipped. Attach the pressure tester to the same place where you just removed the radiator cap or reservoir cap. The pressure tester may have a universal rubber fitting or come with an array of adapters to connect with your particular cooling system. Now use the pump to add pressurized air to the cooling system. Watch the pressure gauge on the pressure tester and add roughly 15 psi of pressure (but no more than that). The pressure gauge should hold steady indicating no leaks. If the pressure gauge goes down or does not register any pressure, double check your pressure tester connection just in case. If the system will not hold pressure, you will need to repair the leak. You can use link hidden, please login to view to help locate the leak if it is not easily apparent. Check out all the
link hidden, please login to view available on link hidden, please login to view or trust one of our 17,000 link hidden, please login to view for routine maintenance and repairs. For more information on how to test engine coolant sensor output and other cooling system parts, chat with a knowledgeable expert at your link hidden, please login to view. The post
link hidden, please login to view appeared first on link hidden, please login to view.
link hidden, please login to view -
By Counterman
Continental’s line of ATE replacement brake fluids feature special formulations designed to help maximize brake-system performance in all types of electronic, hydraulic and racing systems.
The full line includes ATE Super DOT 5.1, the technological standard for brake fluids; ATE SL.6 Brake Fluid, the ideal replacement for ESP, ABS and ASR electronic brake systems; ATE SL for hydraulic brake and clutch systems; and ATE TYP 200 for high-performance and racing applications.
ATE Super DOT 5.1 Premium Brake Fluid’s formulation sets a new performance standard for brake fluids, according to Continental. It combines a high wet boiling point of 356 F with outstanding viscosity at very low temperatures to deliver a capability that previous brake fluids were unable to achieve. With a maximum of 750 mm²/sec. at minus 40 F, ATE Super DOT 5.1 viscosity values exceed even those of ISO Class 6, which are well above the specifications for DOT 5.1 class brake fluids, according to the company.
ATE SL.6 brake fluidis the optimum replacement for DOT 4 fluid in ESP, ABS and ASR brake systems. Its low-viscosity texture allows electronic brake systems to react more quickly for improved safety. ATE SL.6 offersexcellent application coverage for the advanced braking systems used in high-end vehicle makes and models.
ATE SL brake fluidis an excellent DOT 4 replacement for use as hydraulic fluid in brake and clutch systems. It features a mixture of polyethylene glycol ethers, polyethylene glycols and boric acid esters of polyethylene glycols with anti-corrosion/anti-aging agents. ATE SL meets and exceeds the requirements of the brake-fluid standards FMVSS-No. 116 – DOT 4, SAE J1704 and ISO 4925, Class 4, among others.
ATE TYP 200 brake fluid exceeds all DOT 4 standards and excels under the extreme demands of high-performance driving. Compatible with all DOT 3, DOT 4 and DOT 5.1 brake fluids, the formula delivers a minimal drop in boiling point due to outstanding water-binding properties that result in a long-lasting fluid that can provide optimal performance for up to three years under normal highway driving conditions, according to Continental. The high wet and dry boiling points make this fluid an excellent choice for street-driven vehicles as well.
“ATE brake fluids are the result of many years of experience and expertise in developing OE brake systems,” notes Dan Caciolo, head of product management at Continental. “The viscosity, boiling point and pressure behavior of our fluids interact perfectly to allow the braking system to react quickly and reliably in any application. Our boiling points and viscosity exceed legal specifications, while our high-quality additives help deliver outstanding corrosion protection and optimum compatibility with brake system’s sealing materials.”
ATE is an aftermarket brand of Continental. For more information, visit
link hidden, please login to view or contact [email protected]. The post
link hidden, please login to view appeared first on link hidden, please login to view.
link hidden, please login to view
-
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.