Quantcast
Jump to content
  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, Twitter, Google, and LinkedIn. 

     

Ford 6.0 Liter Powerstroke EGR Valve Installation


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

 Share

  • Similar Content

  • Similar Topics

    • By OReilly Auto Parts
      How To: Change the Tail Lights on a 2015 to 2020 Ford F-150
    • By Counterman
      Alligator sens.it RS universal TPMS sensors now cover the 2020-2021 Ford Bronco.
      “This vehicle has hit the market by storm and Alligator is proud to offer service for this impressive new SUV,” Alligator said in a news release.
      The all-terrain Bronco is another addition to the expanding list of Ford vehicles that can automatically learn and detect TPMS sensors once installed into each wheel assembly, or if rotating tires at regular intervals.
      Alligator offers these instructions: Simply install the new Alligator sens.it RS universal TPMS sensors, then begin driving the SUV, and the system will register the new IDs automatically while driving. Based on the instruction manual, make sure to park the vehicle the required amount of time for the TPMS system to enter into relearn mode (usually 20 minutes).
      The Alligator sens.it RS universal TPMS sensor also supports location detection, so when rotating tires, there’s no need to reset the system manually. Simply follow the same procedure as auto-learning and the display will show the new tire locations on the dash after driving for a few minutes.
      “By continuing to use Alligator sens.it RS universal TPMS sensors, shops can ensure they are working with a part that supports the full range of OE features, which helps make the job easier, reduces unnecessary downtime in the bay for TPMS learning or general sensor issues, helps the bottom line and, most importantly, keeps customers happy and coming back,” the company said. “When replacing OEM sensors with aftermarket sensors, rest assured that RS Series TPMS sensors from Alligator will provide all the functionality your car delivers. Regardless of the tool you use to program your Alligator TPMS sensors, this new application should be available for programming after you complete the latest update.”
      Alligator is a brand of
      link hidden, please login to view. The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By OReilly Auto Parts
      How To: Change the Oil and Filter On a 2004 to 2011 Ford Focus
    • By Counterman
      The VVT category continues to grow in the automotive aftermarket. These systems are becoming more and more common as manufacturers try to meet tightened fuel-economy standards. When it comes to meeting those standards, variable-valve timing (VVT) is just one piece of the puzzle. As these vehicles exit the factory warranty period, there’s a huge opportunity for counter pros to serve customers’ repair needs.
      Variable-valve timing is the process of altering the timing and/or duration of a valve lift event, to improve performance, fuel economy and emissions.
      On a conventional engine, the opening and closing of the valves is based on their fixed position relative to the timing chain or belt, which is driven by the crankshaft. Without VVT, the valve timing remains the same for all conditions. This means that certain compromises must be made by manufacturers; this is achieved by selecting a specific cam profile. The cam profile affects the valve lift and duration.
      However, an engine equipped with VVT can make additional adjustments, so it isn’t constrained by the cam profile. VVT systems allow for improved performance over a broader operating range. The ability to alter valve timing at any engine speed gives manufacturers the ability to tune for optimal performance and efficiency. The camshaft’s timing can be advanced to produce better low-end torque, or it can be retarded to have better high-end torque as directed by the ECU.
      System Overview
      It’s important to point out that VVT is not just a single part or component – it’s an entire system. There are a number of components that all need to work hand-in-hand in order for the system to function. Let’s talk about some of the components that make up the entire system.
      The part that actually controls the position of the camshaft is the phaser. Cam phasers may feature a piston-type construction, or a vane-type construction. Regardless of construction, they use engine-oil pressure to push against a strong internal spring. A VVT solenoid is used to adjust the engine-oil pressure into the phaser.
      While early VVT systems were active only in higher rpm ranges or under specific conditions, modern systems are actively adjusting the intake and exhaust camshaft positions for the best possible efficiency at all times.
      VVT systems have caused one emissions system to become all but extinct: exhaust-gas recirculation (EGR). Since VVT is able to control the way gasses enter and exit the combustion chamber, there’s no need for EGR systems.
      EGR systems were designed to reduce nitrous oxides (NOx) by recirculating exhaust gasses back into the intake manifold. This causes the combustion temperature to drop below 2,500 F, preventing the formation of these harmful gasses. EGR systems did work, but lacked the reaction time and precision offered by VVT systems.
      Failure Points
      In many ways, engine oil is the lifeblood of the VVT system. Inadequate oil pressure or contaminated oil will hamper system performance. It’s very important that customers are following the manufacturer’s maintenance schedule, and using only the specified type, grade and viscosity of engine oil in their vehicle.
      Clean engine oil is critical to VVT-system operation. The oil passages of a VVT system are like a dead end, and the oil doesn’t flush out the passages all the time. If a piece of debris finds its way into a phaser or oil-control valve, it could be there for a while. Most manufacturers use a metal-screen filter to prevent debris from reaching the variable-valve timing system. Some manufacturers make the screen serviceable but, on some vehicles, it could be inside the oil-control solenoid and almost impossible to inspect or even clean.
      The relationship between the camshaft and crankshaft is critical in today’s VVT systems. The ECU relies on information from the camshaft position sensor and the crankshaft position sensor to determine ignition and valve timing. If either of these sensors produces a faulty signal, the VVT-system performance will suffer. A loose or stretched timing chain or timing belt, or a worn timing guide or tensioner, all could negatively affect the VVT system.
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

    • DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.


      DIY like a pro! Shop from over 1,000,000 Repair Manuals at eManualOnline.com! As low as $14.99 per manual. Shop now.

    • By Counterman
      The first of the Ford “modular” engines was a 4.6-liter V-8 that appeared in the 1991 Lincoln Town Car. The family soon grew into six unique displacements, including a V-10. Three decades later, the modular family is still around, most popularly in the current 5-liter “Coyote” trim.
      Let’s look back at some of these original engines, the vehicles they powered and a few of the reasons we still hear about this engine family on a regular basis.
      But first, a disclaimer: The “modular” name doesn’t refer to parts interchangeability, although some of these engine designs share common features. In this case, “modular” refers to the manufacturing processes used at the Romeo, Windsor and Essex engine plants to produce these engines quickly for a wide range of platforms. Each of these engines has distinct design features, and some need to be catalogued carefully – utilizing VIN, application and model-year information to properly identify components.
      The original 4.6-liter was a two-valve SOHC V-8 engine found in the Town Car, Crown Victoria and Grand Marquis. The 4.6-liter was designed as a replacement for the old pushrod 5-liter and 5.8-liter (aka the “302” and “351”), a trend that continued as the pushrod engine slowly disappeared from the Thunderbird, Mustang and F-Series trucks throughout the mid to late 1990s. These early engines were built in Romeo, Michigan, and Windsor, Ontario, and the two have distinctly different timing drives and cylinder-head designs.
      Identifying Romeo-built and Windsor-built 4.6-liter engines can be as simple as decoding a VIN – providing the engine is still in its original vehicle. Unfortunately, Ford chose to identify the Romeo engines with a “W” in the 8th VIN position, while the Windsor engine was assigned the number “6”!
      Looking at the engines themselves also gives a few clear clues, in case you’re dealing with an engine “in the wild,” or a possible transplant. The valve covers on the Romeo engine are held down with 11 bolts, while Windsors feature 13/14 bolt patterns. Beneath the timing covers, you’ll also find that Romeo cam gears are bolted to the camshaft, and Windsor cam gears are pressed onto their shafts. Even bare blocks can be identified easily by locating the “R” or “W” casting marks on each engine – and this time “W” actually means WINDSOR!
      F-Series trucks received a new modular option in 1997 in the form of the 5.4-liter, another two-valve SOHC V-8. The same year, E-Series vans were the first to receive the new modular 6.8-liter V-10. These engines were manufactured in the two Canadian plants, so there are no Romeo versions. These modular truck engines became known as the “Triton” series, which became a point of confusion a few years later when Ford introduced a THREE-valve cylinder-head design to the family.
      Triton would seem to indicate “three” of something, just like tricycles have three wheels or triangles have three sides, but the name pre-dates the first of the three-valve designs introduced in 2004. Triton truck engines can be found in both two- and three-valve versions, and the last 4.6-liter modular engine (produced in 2014) actually was a two-valve Triton engine.
      In addition to the trucks, three-valve engines were found in Mustangs and SUVs, but the modular family also included a series of four-valve DOHC engines in both 4.6-liter and 5.4-liter displacements. These were fit primarily in SVT, Shelby and other performance-oriented vehicles, but the Lincoln lineup also received the four-valve DOHC treatment periodically throughout the modular years. The current 5-liter Coyote continues this 4V DOHC tradition, along with its derivative 5.2-liter Voodoo/Predator, and 5.8-liter Trinity cousins.
      The 4.6-, 5.4- and 6.8-liter engines were plagued with spark plug issues in both the two-valve and three-valve versions. 1997-2008 modular two-valve engines with aluminum cylinder heads were prone to stripping spark plug threads, often ejecting the spark plug forcefully from its cylinder port.
      The three-valve design did not have thread-stripping issues, but the unique two-piece spark plug that Ford used in the three-valve engines from 2004-2007 has a tendency to snap in half during removal, leaving a difficult-to-remove stump of electrode shell at the bottom of the spark plug well. Several tool companies have developed plug-removal kits for the 3V vehicles, and thread-repair kits for the 2V applications. Ford redesigned the 3V heads (and spark plugs) for 2008, and has since upgraded the plugs specified for the 2004-2007 engines. Aftermarket companies also have developed one-piece replacement spark plugs for these applications, which decreases the chances of that tune-up going horribly wrong!
      Even though these modular engines have been around for a long time, the applications in which they originally were installed lend themselves to longevity. They still are present in fleets, from taxis and police cars to cargo vans and work trucks. Of course, modular Mustangs of all varieties continue to be enthusiast favorites, from daily driving to competition at drag strips, autocross and circle-track events. The secondary market for the Crown Victoria also includes motorsports, as they have become the preferred demolition-derby car in most full-size classes, and there are even racing series exclusively for P71 (police-package) Vics!
      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
×
  • Create New...